Conferences related to Cosmic Events

Back to Top

Oceans 2020 MTS/IEEE GULF COAST

To promote awareness, understanding, advancement and application of ocean engineering and marine technology. This includes all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.

  • OCEANS 2018 MTS/IEEE Charleston

    Ocean, coastal, and atmospheric science and technology advances and applications

  • OCEANS 2017 - Anchorage

    Papers on ocean technology, exhibits from ocean equipment and service suppliers, student posters and student poster competition, tutorials on ocean technology, workshops and town meetings on policy and governmental process.

  • OCEANS 2016

    The Marine Technology Scociety and the Oceanic Engineering Society of the IEEE cosponor a joint annual conference and exposition on ocean science, engineering, and policy. The OCEANS conference covers four days. One day for tutorials and three for approx. 500 technical papers and 150 -200 exhibits.

  • OCEANS 2015

    The Marine Technology Scociety and the Oceanic Engineering Society of the IEEE cosponor a joint annual conference and exposition on ocean science, engineering, and policy. The OCEANS conference covers four days. One day for tutorials and three for approx. 450 technical papers and 150-200 exhibits.

  • OCEANS 2014

    The OCEANS conference covers four days. One day for tutorials and three for approx. 450 technical papers and 150-200 exhibits.

  • OCEANS 2013

    Three days of 8-10 tracks of technical sessions (400-450 papers) and concurent exhibition (150-250 exhibitors)

  • OCEANS 2012

    Ocean related technology. Tutorials and three days of technical sessions and exhibits. 8-12 parallel technical tracks.

  • OCEANS 2011

    The Marine Technology Society and the Oceanic Engineering Scociety of the IEEE cosponsor a joint annual conference and exposition on ocean science engineering, and policy.

  • OCEANS 2010

    The Marine Technology Society and the Oceanic Engineering Scociety of the IEEE cosponsor a joint annual conference and exposition on ocean science engineering, and policy.

  • OCEANS 2009

  • OCEANS 2008

    The Marine Technology Society (MTS) and the Oceanic Engineering Society (OES) of the Institute of Electrical and Electronic Engineers (IEEE) cosponsor a joint conference and exposition on ocean science, engineering, education, and policy. Held annually in the fall, it has become a focal point for the ocean and marine community to meet, learn, and exhibit products and services. The conference includes technical sessions, workshops, student poster sessions, job fairs, tutorials and a large exhibit.

  • OCEANS 2007

  • OCEANS 2006

  • OCEANS 2005

  • OCEANS 2004

  • OCEANS 2003

  • OCEANS 2002

  • OCEANS 2001

  • OCEANS 2000

  • OCEANS '99

  • OCEANS '98

  • OCEANS '97

  • OCEANS '96


2019 56th ACM/ESDA/IEEE Design Automation Conference (DAC)

EDA (Electronics Design Automation) is becoming ever more important with the continuous scaling of semiconductor devices and the growing complexities of their use in circuits and systems. Demands for lower-power, higher-reliability and more agile electronic systems raise new challenges to both design and design automation of such systems. For the past five decades, the primary focus of research track at DAC has been to showcase leading-edge research and practice in tools and methodologies for the design of circuits and systems.

  • 2022 59th ACM/ESDA/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2021 58th ACM/ESDA/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2020 57th ACM/ESDA/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)

    DAC Description for TMRF The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading

  • 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 session on design methodologies and EDA tool developments, keynotes, panels, plus User Track presentations. A diverse worldwide community representing more than 1,000 organization attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2012 49th ACM/EDAC/IEEE Design Automation Conference (DAC)

    The Design Automation Conference (DAC) is the premier event for the design of electronic circuits and systems, and for EDA and silicon solutions. DAC features a wide array of technical presentations plus over 200 of the leading electronics design suppliers

  • 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC)

    The Design Automation Conference is the world s leading technical conference and tradeshow on electronic design and design automation. DAC is where the IC Design and EDA ecosystem learns, networks, and does business.

  • 2010 47th ACM/EDAC/IEEE Design Automation Conference (DAC)

    The Design Automation Conference (DAC) is the premier event for the design of electronic circuits and systems, and for EDA and silicon solutions. DAC features a wide array of technical presentations plus over 200 of the leading electronics design suppliers.

  • 2009 46th ACM/EDAC/IEEE Design Automation Conference (DAC)

    DAC is the premier event for the electronic design community. DAC offers the industry s most prestigious technical conference in combination with the biggest exhibition, bringing together design, design automation and manufacturing market influencers.

  • 2008 45th ACM/EDAC/IEEE Design Automation Conference (DAC)

    The Design Automation Conference (DAC) is the premier event for the design of electronic circuits and systems, and for EDA and silicon solutions. DAC features a wide array of technical presentations plus over 250 of the leading electronics design suppliers.

  • 2007 44th ACM/IEEE Design Automation Conference (DAC)

    The Design Automation Conference (DAC) is the premier Electronic Design Automation (EDA) and silicon solution event. DAC features over 50 technical sessions covering the latest in design methodologies and EDA tool developments and an Exhibition and Demo Suite area with over 250 of the leading EDA, silicon and IP Providers.

  • 2006 43rd ACM/IEEE Design Automation Conference (DAC)

  • 2005 42nd ACM/IEEE Design Automation Conference (DAC)

  • 2004 41st ACM/IEEE Design Automation Conference (DAC)

  • 2003 40th ACM/IEEE Design Automation Conference (DAC)

  • 2002 39th ACM/IEEE Design Automation Conference (DAC)

  • 2001 38th ACM/IEEE Design Automation Conference (DAC)

  • 2000 37th ACM/IEEE Design Automation Conference (DAC)

  • 1999 36th ACM/IEEE Design Automation Conference (DAC)

  • 1998 35th ACM/IEEE Design Automation Conference (DAC)

  • 1997 34th ACM/IEEE Design Automation Conference (DAC)

  • 1996 33rd ACM/IEEE Design Automation Conference (DAC)


2019 IEEE International Reliability Physics Symposium (IRPS)

Meeting of academia and research professionals to discuss reliability challenges.


2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)

This conference is the annual premier meeting on the use of instrumentation in the Nuclear and Medical fields. The meeting has a very long history of providing an exciting venue for scientists to present their latest advances, exchange ideas, renew existing collaboration and form new ones. The NSS portion of the conference is an ideal forum for scientists and engineers in the field of Nuclear Science, radiation instrumentation, software engineering and data acquisition. The MIC is one of the most informative venues on the state-of-the art use of physics, engineering, and mathematics in Nuclear Medicine and related imaging modalities, such as CT and increasingly so MRI, through the development of hybrid devices


2018 31st International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems (VLSID)

This conference is a forum for researchers and designers to present and discuss various aspects of VLSI design, EDA, embedded systems, and enabling technologies. The program will consist of regular paper sessions, special sessions, embedded tutorials, panel discussions, design contest, industrial exhibits and tutorials. This is the premier conference/exhibition in this area in India, attracting designers, EDA professionals, and EDA tool users. The program committee for the conference has a significant representation from the EDA research community and a large fraction of the papers published in this conference are EDA-related


More Conferences

Periodicals related to Cosmic Events

Back to Top

Biomedical Circuits and Systems, IEEE Transactions on

The Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems ...


Circuits and Systems II: Express Briefs, IEEE Transactions on

Part I will now contain regular papers focusing on all matters related to fundamental theory, applications, analog and digital signal processing. Part II will report on the latest significant results across all of these topic areas.


Device and Materials Reliability, IEEE Transactions on

Provides leading edge information that is critical to the creation of reliable electronic devices and materials, and a focus for interdisciplinary communication in the state of the art of reliability of electronic devices, and the materials used in their manufacture. It focuses on the reliability of electronic, optical, and magnetic devices, and microsystems; the materials and processes used in the ...


Electron Devices, IEEE Transactions on

Publishes original and significant contributions relating to the theory, design, performance and reliability of electron devices, including optoelectronics devices, nanoscale devices, solid-state devices, integrated electronic devices, energy sources, power devices, displays, sensors, electro-mechanical devices, quantum devices and electron tubes.


Geoscience and Remote Sensing, IEEE Transactions on

Theory, concepts, and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.


More Periodicals

Most published Xplore authors for Cosmic Events

Back to Top

No authors for "Cosmic Events"


Xplore Articles related to Cosmic Events

Back to Top

Combined Optical and Electronic Readout for Event Reconstruction in a GEM-Based TPC

IEEE Transactions on Nuclear Science, 2018

Optically read out time projection chambers (TPCs) based on gaseous electron multipliers (GEMs) combine 3-D event reconstruction capabilities with high spatial resolution and charge amplification factors. The approach of reconstructing particle tracks from 2-D projections obtained with imaging sensors and depth information from photomultiplier tubes is limited to specific cases such as straight particle trajectories. A combination of optical and ...


Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 × 10<sup>−21</sup>on a 100 ms time scale

2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum, 2009

The measurement of the space-time structure variations induced by strong cosmic events (supernovae, coalescing binaries of neutron stars, etc.) requires an oscillator with a relative stability of 10-21on time scales typically ap100 ms. We demonstrate that the Virgo interferometer with a wavelength of 1.064 degm has a laser frequency with an in-loop stability of 1.0 times 10-21on a 100 ms ...


Satellite intercept targeting DSP algorithm design and evaluation

IEEE Transactions on Aerospace and Electronic Systems, 1993

A unified processing approach for the detection and localization of satellites or other exoatmospheric targets is presented. Enhanced filtering and centroid determination algorithms were developed based on real-time implementation constraints, mission conditions including accuracy requirements, and signature structure. The signature structure consisted of target returns, high-frequency random noise, low-frequency structured noise, and contamination sources resulting from debris and cosmic events. ...


The Einstein Telescope

2014 IEEE Metrology for Aerospace (MetroAeroSpace), 2014

Interferometric gravitational wave detectors are amongst the most sensitive instruments ever built. They are hunting for tiny oscillations in space-time originating from cosmic events such as inspiraling objects or supernova explosions. These detectors are based on Michelson-like interferometers reaching sensitivities for lengths changes of better than 10-18m/√Hz. Currently, a second generation of gravitational wave detectors is under construction reducing relevant ...


Handling of the generation of primary events in Gauss, the LHCb simulation framework

IEEE Nuclear Science Symposuim & Medical Imaging Conference, 2010

The LHCb simulation application. Gauss, consists or two independent phases, the generation of the primary event and the tracking of particles produced in the experimental setup. For the LHCh experimental program it is particularly important to model B meson decays: the EvtGcn code developed in CLEO and BaBah has been chosen and customized for non-coherent B production as occurring in ...


More Xplore Articles

Educational Resources on Cosmic Events

Back to Top

IEEE-USA E-Books

  • Combined Optical and Electronic Readout for Event Reconstruction in a GEM-Based TPC

    Optically read out time projection chambers (TPCs) based on gaseous electron multipliers (GEMs) combine 3-D event reconstruction capabilities with high spatial resolution and charge amplification factors. The approach of reconstructing particle tracks from 2-D projections obtained with imaging sensors and depth information from photomultiplier tubes is limited to specific cases such as straight particle trajectories. A combination of optical and electronic readout realized by a semitransparent anode placed between a triple-GEM stack and a camera in an optically read out TPC has been realized and used to reconstruct more complex particle tracks. High spatial resolution 2-D projections combined with a low number of charge readout channels enable accurate 3-D event topology reconstruction. Straight alpha tracks as well as more complex cosmic events have been reconstructed with the presented readout concept. Relative depth information from electronically read out charge signals has been combined with drift time information between primary and secondary scintillation pulses to absolute alpha track reconstructions.

  • Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 × 10<sup>−21</sup>on a 100 ms time scale

    The measurement of the space-time structure variations induced by strong cosmic events (supernovae, coalescing binaries of neutron stars, etc.) requires an oscillator with a relative stability of 10-21on time scales typically ap100 ms. We demonstrate that the Virgo interferometer with a wavelength of 1.064 degm has a laser frequency with an in-loop stability of 1.0 times 10-21on a 100 ms time scale, and an in-loop frequency noise of 2 times 10-7Hz/radic(Hz) at 10 Hz. We show that this fits the specifications. Two references successively stabilize the laser frequency. The first one is a 144 m long suspended cavity; the second one is the common mode of two perpendicular 3 km long Fabry-Perot cavities. The differential mode of the relative length variations of these two optical cavities is the port where we expect the signal for the gravitational waves; this out-of-loop measurement, less sensitive to laser frequency noise, does not show up correlations with the in-loop error signal. This is the best ever performance of short term laser frequency stabilization reported.

  • Satellite intercept targeting DSP algorithm design and evaluation

    A unified processing approach for the detection and localization of satellites or other exoatmospheric targets is presented. Enhanced filtering and centroid determination algorithms were developed based on real-time implementation constraints, mission conditions including accuracy requirements, and signature structure. The signature structure consisted of target returns, high-frequency random noise, low-frequency structured noise, and contamination sources resulting from debris and cosmic events. Detailed signal processing analyses were performed to verify the required subsample accuracy and the sensitivity to hardware and system constraints. The resultant system design was functionally verified in a real-time breadboard processor.<>

  • The Einstein Telescope

    Interferometric gravitational wave detectors are amongst the most sensitive instruments ever built. They are hunting for tiny oscillations in space-time originating from cosmic events such as inspiraling objects or supernova explosions. These detectors are based on Michelson-like interferometers reaching sensitivities for lengths changes of better than 10-18m/√Hz. Currently, a second generation of gravitational wave detectors is under construction reducing relevant noise sources throughout their detection band by one order of magnitude. First steps towards a third generation detector - having two orders of magnitude larger sensitivity compared to the first generation - have been made. This gravitational wave observatory - the Einstein Telescope - is a European-wide effort leading to a sophisticated design including an optimum site selection. We present the status of these activities and give an overview of the state of the art technologies needed to realize such an instrument.

  • Handling of the generation of primary events in Gauss, the LHCb simulation framework

    The LHCb simulation application. Gauss, consists or two independent phases, the generation of the primary event and the tracking of particles produced in the experimental setup. For the LHCh experimental program it is particularly important to model B meson decays: the EvtGcn code developed in CLEO and BaBah has been chosen and customized for non-coherent B production as occurring in pp collisions at the LHC, The initial proton-proton collision is provided by a different generator engine, currently PYTHIA 6 for massive production of signal and generic pp collisions events. Beam gas events, background events originating from proton halo, cosmics and calibration events for different detectors can be generated in addition to pp collisions. Different generator packages as available in the physics community or specifically developed in LHCb are used for the different purposes. Running conditions affecting the events generated such as the size of the luminous region, the number of collisions occuring in a bunch crossing and the number of spill-over events from neighbouring bunches are modeled via dedicated algorithms appropriately configured. The design of the generator phase of Gauss will be described: a modular structure with well defined interfaces specific to the various tasks, e.g. pp collisions, particles' decays, selections, etc. has been chosen. Different implementations are available for the various tasks allowing selecting and combining them as most appropriate at run time as in the case of Pythia 6 im pp collisions or HIJING for beam gas. The advantages of such structure, allowing for example to adopt transparently new generators packages will be discussed.

  • Commissioning of the ATLAS offline software with cosmic rays

    The ATLAS experiment of the LHC is now taking its first data by collecting cosmic ray events. The full reconstruction chain including all sub-systems (inner detector, calorimeters and muon spectrometer) is being commissioned with this kind of data for the first time. Detailed analysis are being performed in order to provide ATLAS with its first alignment and calibration constants and to study the combined muon performance. Combined monitoring tools and event displays have also been developed to ensure good data quality. A simulation of cosmic events according to the different detector and trigger setups has also been provided to verify it gives a good description of the data.

  • Alignment of the ATLAS inner detector

    The ATLAS Experiment is a general purpose detector that will operate at the Large Hadron Collider at CERN in Geneva, Switzerland. Data taking of ATLAS is expected to start mid 2008. The reconstruction of charged particles is performed by silicon and drift tube based subdetectors. In order to achieve its physics goals, the ATLAS tracking requires that the positions of the silicon detector elements are known to a precision better than 10 micrometers. The ultimate precision can only be achieved by track based alignment algorithms. Such algorithms have been developed and the general proof of principles is shown using limited setups such as a test beam data or tracks from cosmic events. In addition the alignment algorithms are exercised using simulated data produced with a misaligned detector geometry.

  • The Einstein telescope

    Albert Einstein postulated that gravitational waves (GWs) were waves in the curvature of space-time in his famous Theory of General Relativity. Einstein wrote that a GW's origin is from objects that undergo a change of their mass quadrupole moment. The distance between free falling test masses will be altered if a GW passes through. The spectral relative length (or distance) change between the test masses h = ΔL/L is the strength of the GW, where L is the distance between the test masses, and ΔL is the absolute spectral length change measured in m/√Hz. Even for rare cosmic events with huge masses (e.g., binary systems with solar mass objects and periods in the millisecond range), an h of only 10-21/√Hz is expected. We present the operating principles of the modern GW interferometric detectors and the second generation of the detectors. Beyond the era of advanced detectors, we discuss novel instruments that could allow routine GW astronomy. Within a European-wide collaboration, a possible design of such a GW observatory-the Einstein Telescope (ET)-has been developed. It aims for a ten times increase in sensitivity compared to the second generation throughout the frequency range from a few hertz up to a few kilohertz, as Fig. 1 illustrates.



Standards related to Cosmic Events

Back to Top

No standards are currently tagged "Cosmic Events"


Jobs related to Cosmic Events

Back to Top