Conferences related to Burn In

Back to Top

2020 IEEE International Conference on Plasma Science (ICOPS)

IEEE International Conference on Plasma Science (ICOPS) is an annual conference coordinated by the Plasma Science and Application Committee (PSAC) of the IEEE Nuclear & Plasma Sciences Society.


2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops andinvitedsessions of the latest significant findings and developments in all the major fields ofbiomedical engineering.Submitted papers will be peer reviewed. Accepted high quality paperswill be presented in oral and postersessions, will appear in the Conference Proceedings and willbe indexed in PubMed/MEDLINE & IEEE Xplore


2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)

Science, technology and applications spanning the millimeter-waves, terahertz and infrared spectral regions


2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

Promote the exchange of ideas between academia and industry in the field of computer and networks dependability


2019 56th ACM/ESDA/IEEE Design Automation Conference (DAC)

EDA (Electronics Design Automation) is becoming ever more important with the continuous scaling of semiconductor devices and the growing complexities of their use in circuits and systems. Demands for lower-power, higher-reliability and more agile electronic systems raise new challenges to both design and design automation of such systems. For the past five decades, the primary focus of research track at DAC has been to showcase leading-edge research and practice in tools and methodologies for the design of circuits and systems.

  • 2022 59th ACM/ESDA/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2021 58th ACM/ESDA/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2020 57th ACM/ESDA/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)

    DAC Description for TMRF The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 sessions on design methodologies and EDA tool developments, keynotes, panels, plus the NEW User Track presentations. A diverse worldwide community representing more than 1,000 organizations attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading

  • 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)

    The world's premier EDA and semiconductor design conference and exhibition. DAC features over 60 session on design methodologies and EDA tool developments, keynotes, panels, plus User Track presentations. A diverse worldwide community representing more than 1,000 organization attends each year, from system designers and architects, logic and circuit designers, validation engineers, CAD managers, senior managers and executives to researchers and academicians from leading universities.

  • 2012 49th ACM/EDAC/IEEE Design Automation Conference (DAC)

    The Design Automation Conference (DAC) is the premier event for the design of electronic circuits and systems, and for EDA and silicon solutions. DAC features a wide array of technical presentations plus over 200 of the leading electronics design suppliers

  • 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC)

    The Design Automation Conference is the world s leading technical conference and tradeshow on electronic design and design automation. DAC is where the IC Design and EDA ecosystem learns, networks, and does business.

  • 2010 47th ACM/EDAC/IEEE Design Automation Conference (DAC)

    The Design Automation Conference (DAC) is the premier event for the design of electronic circuits and systems, and for EDA and silicon solutions. DAC features a wide array of technical presentations plus over 200 of the leading electronics design suppliers.

  • 2009 46th ACM/EDAC/IEEE Design Automation Conference (DAC)

    DAC is the premier event for the electronic design community. DAC offers the industry s most prestigious technical conference in combination with the biggest exhibition, bringing together design, design automation and manufacturing market influencers.

  • 2008 45th ACM/EDAC/IEEE Design Automation Conference (DAC)

    The Design Automation Conference (DAC) is the premier event for the design of electronic circuits and systems, and for EDA and silicon solutions. DAC features a wide array of technical presentations plus over 250 of the leading electronics design suppliers.

  • 2007 44th ACM/IEEE Design Automation Conference (DAC)

    The Design Automation Conference (DAC) is the premier Electronic Design Automation (EDA) and silicon solution event. DAC features over 50 technical sessions covering the latest in design methodologies and EDA tool developments and an Exhibition and Demo Suite area with over 250 of the leading EDA, silicon and IP Providers.

  • 2006 43rd ACM/IEEE Design Automation Conference (DAC)

  • 2005 42nd ACM/IEEE Design Automation Conference (DAC)

  • 2004 41st ACM/IEEE Design Automation Conference (DAC)

  • 2003 40th ACM/IEEE Design Automation Conference (DAC)

  • 2002 39th ACM/IEEE Design Automation Conference (DAC)

  • 2001 38th ACM/IEEE Design Automation Conference (DAC)

  • 2000 37th ACM/IEEE Design Automation Conference (DAC)

  • 1999 36th ACM/IEEE Design Automation Conference (DAC)

  • 1998 35th ACM/IEEE Design Automation Conference (DAC)

  • 1997 34th ACM/IEEE Design Automation Conference (DAC)

  • 1996 33rd ACM/IEEE Design Automation Conference (DAC)


More Conferences

Periodicals related to Burn In

Back to Top

Applied Superconductivity, IEEE Transactions on

Contains articles on the applications and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Power applications include magnet design as well asmotors, generators, and power transmission


Automatic Control, IEEE Transactions on

The theory, design and application of Control Systems. It shall encompass components, and the integration of these components, as are necessary for the construction of such systems. The word `systems' as used herein shall be interpreted to include physical, biological, organizational and other entities and combinations thereof, which can be represented through a mathematical symbolism. The Field of Interest: shall ...


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Components and Packaging Technologies, IEEE Transactions on

Component parts, hybrid microelectronics, materials, packaging techniques, and manufacturing technology.


Computing in Science & Engineering

Physics, medicine, astronomy—these and other hard sciences share a common need for efficient algorithms, system software, and computer architecture to address large computational problems. And yet, useful advances in computational techniques that could benefit many researchers are rarely shared. To meet that need, Computing in Science & Engineering (CiSE) presents scientific and computational contributions in a clear and accessible format. ...


More Periodicals

Most published Xplore authors for Burn In

Back to Top

Xplore Articles related to Burn In

Back to Top

Burn-in stress induced BTI degradation and post-burn-in high temperature anneal (Bake) effects in advanced HKMG and oxynitride based CMOS ring oscillators

2012 IEEE International Reliability Physics Symposium (IRPS), 2012

The impact of Bias Temperature Instability stress and poststress high temperature anneal (bake) effects on the performance of Ring Oscillator (RO) circuits is investigated for advanced node High-k Metal Gate (HKMG) and Oxynitride (SiON) based Silicon-On-Insulator (SOI) CMOS technologies. Examination of the circuit response (in terms of % frequency degradation) to a wide range of stress bias/temperature conditions reveals a ...


An device case temperature closed-loop control system during burn-in test

The Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety, 2011

Burn-in is used to force the failure of marginal devices before using into products. Usually devices are placed in a burn-in oven. The burn-in time mainly depends on the device junction temperature, so the junction temperature control is very important during burn-in test. Usually the oven ambient temperature is closed-loop controlled during burn-in, but the device junction temperature is open-loop, ...


Thermal management of integrated circuits in burn-in environment

The Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety, 2011

Burn-in screening test technology has been an important method to ensure integrated circuits (IC) quality and reliability. But there are many problems remains to be solved during burn-in and accurate junction temperature of IC during burn-in is one of these problems. Leakage currents are rapidly increasing with CMOS IC technology scaling, and this will lead to high junction temperature of ...


Cost optimization of Gamma distribution accelerated burn-in

2011 International Conference on Multimedia Technology, 2011

The burn-in process is operated under severe (stress) conditions involving high temperature, voltage, etc. and the product's residual life depends on the burn-in stress level and the length of burn-in period. Accelerated burn-in before shipment will reject poor-quality products and improve product reliability within a warranty period. Accelerated burn-in saves time but may cost more. In this paper, our goal ...


Junction Temperature During Burn-in: How Variable is It and How Can We Control It?

Twenty-Third Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2007

Electronic devices are some of the most reliable consumer products. It is taken for granted that they will "work" but a consideration of the number of millions of interconnects and the complexity of the manufacturing processing makes this remarkable. The semiconductor industry has embraced the use of "Burn-in" to force the failure of marginal devices before they reach final assembly ...


More Xplore Articles

Educational Resources on Burn In

Back to Top

IEEE-USA E-Books

  • Burn-in stress induced BTI degradation and post-burn-in high temperature anneal (Bake) effects in advanced HKMG and oxynitride based CMOS ring oscillators

    The impact of Bias Temperature Instability stress and poststress high temperature anneal (bake) effects on the performance of Ring Oscillator (RO) circuits is investigated for advanced node High-k Metal Gate (HKMG) and Oxynitride (SiON) based Silicon-On-Insulator (SOI) CMOS technologies. Examination of the circuit response (in terms of % frequency degradation) to a wide range of stress bias/temperature conditions reveals a distinct difference between the two technologies with respect to the voltage acceleration of frequency degradation. This difference is explained in view of the PBTI/NBTI voltage acceleration behaviour and indicates that PBTI dominates HKMG RO performance degradation. Post burn-in bake is found to be equally effective in recovering the burn-in induced frequency degradation in both HKMG and Oxynitride ROs. Finally, a simple model is proposed to predict net RO performance degradation from a combined burn-in/post-burn-in bake as a useful guideline for optimizing product burn-in testing.

  • An device case temperature closed-loop control system during burn-in test

    Burn-in is used to force the failure of marginal devices before using into products. Usually devices are placed in a burn-in oven. The burn-in time mainly depends on the device junction temperature, so the junction temperature control is very important during burn-in test. Usually the oven ambient temperature is closed-loop controlled during burn-in, but the device junction temperature is open-loop, not accurately controlled. Consequently some devices may be at a lower temperature (junction temperature lower than required) and others may be at a higher temperature (junction temperature higher than required) in the same burn-in oven. Latest silicon processing technology results in significant power variations between chips produced even on the same wafer, thus some devices with higher power dissipation will be burned at a hotter temperature, which means a potential for thermal runaway. At the same time, high leakage currents that are rapidly increasing with technology scaling become more crucial during burn-in test with stressed voltage and temperature applied, and excessive leakage may lead to higher junction temperatures, possible thermal runaway. Thermal runaway means temperature increases uncontrollably and can result in damage to the socket. To solve above problems and avoid thermal runaway, each device junction temperature should be stable during burn-in test. Controlling the device junction temperature accurately by each socket is a solution. This paper describes a closed-loop device case temperature control system, which can ensure that the device junction temperature is stable. Each socket becomes a controlled environment during burn-in test for a wide range of influences, for example, process variations and ambient temperatures. Once disturbance occurs, for example, the burn-in oven temperature change, the control system with better dynamic response can get the case temperature quickly back to stable.

  • Thermal management of integrated circuits in burn-in environment

    Burn-in screening test technology has been an important method to ensure integrated circuits (IC) quality and reliability. But there are many problems remains to be solved during burn-in and accurate junction temperature of IC during burn-in is one of these problems. Leakage currents are rapidly increasing with CMOS IC technology scaling, and this will lead to high junction temperature of IC in burn-in environment. Positive feedback between junction temperature and leakage currents result in continual junction temperature increases, and thermal runaway will probably happen. In addition, differences of frequency during burn-in and variation of device parameters, all these lead to the junction temperature of IC not the same even in the same burn-in environment. To solve these problems, a closed-loop temperature controlled system and corresponding integrated IC's case temperature acquired method are presented in this paper. Under the ambient temperature of burn-in oven, each socket is a microenvironment managed by closed-loop temperature controlled system. Several small thermal resistors which measure the temperature of different areas of the IC are mounted on the surface of the IC in the burn-in socket and we choose measured maximum temperature as the feedback signal of the temperature controlled system. Compared with junction temperature of IC without temperature controlled system, junction temperature of different IC with temperature controlled system in burn-in environment almost the same, and steady state error is in the range of 0.2°C which is far less than differences of junction temperature without temperature controlled system. Rise time and dynamic response time are all much faster. All these advantages make burn-in process reliable and integrated circuits of great reliability.

  • Cost optimization of Gamma distribution accelerated burn-in

    The burn-in process is operated under severe (stress) conditions involving high temperature, voltage, etc. and the product's residual life depends on the burn-in stress level and the length of burn-in period. Accelerated burn-in before shipment will reject poor-quality products and improve product reliability within a warranty period. Accelerated burn-in saves time but may cost more. In this paper, our goal is to find the appropriate testing parameters to minimize the total of testing, manufacturing, quality and reliability costs. The upper and lower bounds for the optimal burn-in time are derived. It is assumed in our work that the failure pattern follows Gamma distribution and the burn-in process is operated under approximately the same environment as that of the early operating life of the product.

  • Junction Temperature During Burn-in: How Variable is It and How Can We Control It?

    Electronic devices are some of the most reliable consumer products. It is taken for granted that they will "work" but a consideration of the number of millions of interconnects and the complexity of the manufacturing processing makes this remarkable. The semiconductor industry has embraced the use of "Burn-in" to force the failure of marginal devices before they reach final assembly into end products. The burn-in process uses a combination of temperature and voltage to stress the device. For economies of scale this is usually accomplished by placing devices in a burn-in oven. The time to ensure the early failure of marginal devices is dependent on the junction temperature and this is a specified by the reliability engineer. However, do we really know the junction temperature? Is it estimated or controlled or how is it measured? This paper will review some of the aspects of burn-in and the way the junction temperature can be measured or inferred. The impact of on junction temperature for devices which have a wide power range will be evaluated and discussed. Methods to understand and control the junction temperature, during burn-in will be reviewed and the impact on burn-in time discussed. The ability to accurately control the process is dependent on an understanding of junction temperature. Accurately controlling the junction temperature, not the oven ambient temperature offers the opportunity to reducing burn-in time by raising the temperature. The potential for higher burn-in temperatures and the impact on burn-in time will be discussed.

  • A test pattern selection method for dynamic burn-in of logic circuits based on ATPG technique

    State transition of nodes in the circuit generates heat which usually needs to be minimized for reliability consideration. In this work, instead, the heat generated is used to burn-in the CUT. A burn-in test pattern selection technique based on the ATPG approach for maximizing the dynamic power of the CUT is proposed. Experimental results show that the technique is effective in selecting the patterns which offer maximal power. It can be applied into the burn-in of logic circuits and SoCs in an energy saving manner.

  • Automated Multi-Channel DC-Biased Burn-in Test System using Hall Effect Current Sensor

    This manuscript reports on a fast, accurate, and cost-effective current sensing technique for multi-channel DC-biased burn-in test systems. Hybrid microwave modules designed for military and space platforms must be undergone electrical burn-in and life tests according to the production-level military and space qualification standards. These tests require prolonged test durations on the order of hundreds of hours and multi-channel test setups along with the continuous current monitoring and recording for each device under test (DUT). Current monitoring for a single channel setup is quite straightforward. However, for multi-channel test scenario, using the conventional test methods with specific power supply for each DUT may lead to costly and bulky systems. Precision Hall-effect current sensor is a good alternative monitoring the current of DUTs using a common power supply. For such a current sensor, as the current flows through the copper conduction path, it creates a magnetic field that is sensed by the integrated Hall integrated circuit (IC) and converted into a linearly proportional voltage. To digitize the output voltage of the sensor, a precision analog-to-digital converter (ADC) with SPI or I2C communication interface is used. One advantage of using the Hall sensor structure for measuring the target current will result in minimal power loss due to the non-contact inductive detection. In addition to the utilization of Hall-effect current sensor, we implemented single-pole-single-throw (SPST) switch and fast acting fuse for each DUT line in order to protect the system, in case of an early failure in the DUTs. As a result, using the abovementioned configuration we conducted DC burn-in and life tests on various radio frequency (RF) and microwave (MW) high power hybrid modules.

  • Variations of fault manifestation during Burn-In — A case study on industrial SRAM test results

    Modern microcontroller devices for automotive applications are highly safety critical, and so are their embedded memories. It is necessary to ensure the memories to be fail safe during life time. Hence, the detection of latent faults is a big issue in memory testing, as these faults may remain during life time, but need to be detected early in production. Burn-In makes such faults detectable as they become manifested through high voltage and temperature stress. Faults that are marginal before Burn-In appear clearly after Burn-In, and additional faults occur that have not been detected before. In this paper we present industrial test results of Pre-Burn-In and Post-Burn- In tests, and we describe the variation of fault manifestation and fault distribution due to the effect of stress during Burn-In. We can show that former invisible faults become detectable through Burn-In stress and the manifestation of faults changes from dynamic to static.

  • A Burn-in Potential Region Detection Method for the OLED panel displays

    Organic light emitting diode (OLED) displays consist of organic compounds that emit light in response to electric current. OLED displays have been widely adopted to various multimedia devices due to their excellent performance. However, when a high luminance is repeatedly output in a specific region, the pixels within the region are seriously degraded as compared with the surrounding area. Such cumulative non-uniform use of pixels can cause screen burn-in, which is a noticeable color drift on the OLED display over time. In this paper, we propose a novel method to detect a burn-in potential region (BPR) as a preprocessing to prevent the burnin problem. In the proposed method, the lifetime of each pixel of the OLED display is estimated by accumulating the amount of consumed charge. If the discoloration due to the difference in the remaining lifetime between some particular pixels being outputting the high luminance and their surrounding pixels being outputting the low luminance is close to the user's perceptible level, those particular pixels are selected as the BPR. The experimental results demonstrate that the proposed method detects the BPR with superior effectiveness compared with the conventional method.

  • Near neighbor sort yield and wafer sort yield impact on product burn-in and a time dependent reliability study

    A relationship between yield and reliability based on sort local yield or sort near neighbor statistics and wafer sort yield is examined using a production dataset of an AMD CPU product. A comparison is made between the effectiveness between near neighbor statistics and wafer sort yield for predicting downstream fails. Failure-in-time data is also collected during production burn-in to then model the time-dependent impact of near neighbor sort yield. An approach is developed to use this data to predict optimal burn-in durations of different categories of die while maintaining the same outgoing quality or FIT rate.



Standards related to Burn In

Back to Top

IEEE Standard for Radio-Frequency Energy and Current-Flow Symbols

Description of warning symbols for radio frequency radiation and radio frequency induced and contact currents in the frequency range of 3 kHz to 300 GHz.