Conferences related to State feedback

Back to Top

2021 IEEE International Conference on Mechatronics (ICM)

CM focuses on recent developments and future prospects related to the synergetic integration of mechanics, electronics, and information processing.


2020 American Control Conference (ACC)

The ACC is the annual conference of the American Automatic Control Council (AACC, the U.S. national member organization of the International Federation for Automatic Control (IFAC)). The ACC is internationally recognized as a premier scientific and engineering conference dedicated to the advancement of control theory and practice. The ACC brings together an international community of researchers and practitioners to discuss the latest findings in automatic control. The 2020 ACC technical program will

  • 1996 13th Triennial World Congress of the International Federation of Automatic Control (IFAC)

  • 1997 American Control Conference - ACC '97

  • 1998 American Control Conference - ACC '98

  • 1999 American Control Conference - ACC '99

  • 2000 American Control Conference - ACC 2000

  • 2001 American Control Conference - ACC 2001

  • 2002 American Control Conference - ACC 2002

  • 2003 American Control Conference - ACC 2003

  • 2004 American Control Conference - ACC 2004

  • 2005 American Control Conference - ACC 2005

  • 2006 American Control Conference - ACC 2006 (Silver Anniversary)

  • 2007 American Control Conference - ACC 2007

  • 2008 American Control Conference - ACC 2008

  • 2009 American Control Conference - ACC 2009

    The 2009 ACC technical program will cover new developments related to theory, application, and education in control science and engineering. In addition to regular technical sessions the program will also feature interactive and tutorial sessions and preconference workshops.

  • 2010 American Control Conference - ACC 2010

    Theory and practice of automatic control

  • 2011 American Control Conference - ACC 2011

    ACC provides a forum for bringing industry and academia together to discuss the latest developments in the area of Automatic Control Systems, from new control theories, to the advances in sensors and actuator technologies, and to new applications areas for automation.

  • 2012 American Control Conference - ACC 2012

    All areas of control engineering and science.

  • 2013 American Control Conference (ACC)

    Control systems theory and practice. Conference themes on sustainability, societal challenges for control, smart healthcare systems. Conference topics include biological systems, vehicle dynamics and control, consensus control, cooperative control, control of communication networks, control of networked systems, control of distributed parameter systems, decentralized control, delay systems, discrete-event systems, fault detection, fault-tolerant systems, flexible structures, flight control, formation flying, fuzzy systems, hybrid systems, system identification, iterative learning control, model predictive control, linear parameter-varying systems, linear matrix inequalities, machine learning, manufacturing systems, robotics, multi-agent systems, neural networks, nonlinear control, observers, optimal control, optimization, path planning, navigation, robust control, sensor fusion, sliding mode control, stochastic systems, switched systems, uncertain systems, game theory.

  • 2014 American Control Conference - ACC 2014

    All areas of the theory and practice of automatic control, including but not limited to network control systems, model predictive control, systems analysis in biology and medicine, hybrid and switched systems, aerospace systems, power and energy systems and control of nano- and micro-systems.

  • 2015 American Control Conference (ACC)

    control theory, technology, and practice

  • 2016 American Control Conference (ACC)

    Control systems theory and practice. Conference topics include biological systems, vehicle dynamics and control, consensus control, cooperative control, control of communication networks, control of networked systems, control of distributed parameter systems, decentralized control, delay systems, discrete-event systems, fault detection, fault-tolerant systems, flexible structures, flight control, formation flying, fuzzy systems, hybrid systems, system identification, iterative learning control, model predictive control, linear parameter-varying systems, linear matrix inequalities, machine learning, manufacturing systems, robotics, multi-agent systems, neural networks, nonlinear control, observers, optimal control, optimization, path planning, navigation, robust control, sensor fusion, sliding mode control, stochastic systems, switched systems, uncertain systems, game theory.

  • 2017 American Control Conference (ACC)

    Technical topics include biological systems, vehicle dynamics and control, adaptive control, consensus control, cooperative control, control of communication networks, control of networked systems, control of distributed parameter systems, decentralized control, delay systems, discrete-event systems, fault detection, fault-tolerant systems, flexible structures, flight control, formation flying, fuzzy systems, hybrid systems, system identification, iterative learning control, model predictive control, linear parameter-varying systems, linear matrix inequalities, machine learning, manufacturing systems, robotics, multi-agent systems, neural networks, nonlinear control, observers, optimal control, optimization, path planning, navigation, robust control, sensor fusion, sliding mode control, stochastic systems, switched systems, uncertain systems, game theory.

  • 2018 Annual American Control Conference (ACC)

    Technical topics include biological systems, vehicle dynamics and control, adaptive control, consensus control, cooperative control, control of communication networks, control of networked systems, control of distributed parameter systems, decentralized control, delay systems, discrete-event systems, fault detection, fault-tolerant systems, flexible structures, flight control, formation flying, fuzzy systems, hybrid systems, system identification, iterative learning control, model predictive control, linear parameter-varying systems, linear matrix inequalities, machine learning, manufacturing systems, robotics, multi-agent systems, neural networks, nonlinear control, observers, optimal control, optimization, path planning, navigation, robust control, sensor fusion, sliding mode control, stochastic systems, switched systems, uncertain systems, game theory.

  • 2019 American Control Conference (ACC)

    Technical topics include biological systems, vehicle dynamics and control, adaptive control, consensus control, cooperative control, control of communication networks, control of networked systems, control of distributed parameter systems, decentralized control, delay systems, discrete-event systems, fault detection, fault-tolerant systems, flexible structures, flight control, formation flying, fuzzy systems, hybrid systems, system identification, iterative learning control, model predictive control, linear parameter-varying systems, linear matrix inequalities, machine learning, manufacturing systems, robotics, multi-agent systems, neural networks, nonlinear control, observers, optimal control, optimization, path planning, navigation, robust control, sensor fusion, sliding mode control, stochastic systems, switched systems, uncertain systems, game theory.


2020 IEEE International Solid- State Circuits Conference - (ISSCC)

ISSCC is the foremost global forum for solid-state circuits and systems-on-a-chip. The Conference offers 5 days of technical papers and educational events related to integrated circuits, including analog, digital, data converters, memory, RF, communications, imagers, medical and MEMS ICs.


Oceans 2020 MTS/IEEE GULF COAST

To promote awareness, understanding, advancement and application of ocean engineering and marine technology. This includes all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.

  • OCEANS '96

  • OCEANS '97

  • OCEANS '98

  • OCEANS '99

  • OCEANS 2000

  • OCEANS 2001

  • OCEANS 2002

  • OCEANS 2003

  • OCEANS 2004

  • OCEANS 2005

  • OCEANS 2006

  • OCEANS 2007

  • OCEANS 2008

    The Marine Technology Society (MTS) and the Oceanic Engineering Society (OES) of the Institute of Electrical and Electronic Engineers (IEEE) cosponsor a joint conference and exposition on ocean science, engineering, education, and policy. Held annually in the fall, it has become a focal point for the ocean and marine community to meet, learn, and exhibit products and services. The conference includes technical sessions, workshops, student poster sessions, job fairs, tutorials and a large exhibit.

  • OCEANS 2009

  • OCEANS 2010

    The Marine Technology Society and the Oceanic Engineering Scociety of the IEEE cosponsor a joint annual conference and exposition on ocean science engineering, and policy.

  • OCEANS 2011

    The Marine Technology Society and the Oceanic Engineering Scociety of the IEEE cosponsor a joint annual conference and exposition on ocean science engineering, and policy.

  • OCEANS 2012

    Ocean related technology. Tutorials and three days of technical sessions and exhibits. 8-12 parallel technical tracks.

  • OCEANS 2013

    Three days of 8-10 tracks of technical sessions (400-450 papers) and concurent exhibition (150-250 exhibitors)

  • OCEANS 2014

    The OCEANS conference covers four days. One day for tutorials and three for approx. 450 technical papers and 150-200 exhibits.

  • OCEANS 2015

    The Marine Technology Scociety and the Oceanic Engineering Society of the IEEE cosponor a joint annual conference and exposition on ocean science, engineering, and policy. The OCEANS conference covers four days. One day for tutorials and three for approx. 450 technical papers and 150-200 exhibits.

  • OCEANS 2016

    The Marine Technology Scociety and the Oceanic Engineering Society of the IEEE cosponor a joint annual conference and exposition on ocean science, engineering, and policy. The OCEANS conference covers four days. One day for tutorials and three for approx. 500 technical papers and 150 -200 exhibits.

  • OCEANS 2017 - Anchorage

    Papers on ocean technology, exhibits from ocean equipment and service suppliers, student posters and student poster competition, tutorials on ocean technology, workshops and town meetings on policy and governmental process.

  • OCEANS 2018 MTS/IEEE Charleston

    Ocean, coastal, and atmospheric science and technology advances and applications


2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)

The 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2020) will be held in Metro Toronto Convention Centre (MTCC), Toronto, Ontario, Canada. SMC 2020 is the flagship conference of the IEEE Systems, Man, and Cybernetics Society. It provides an international forum for researchers and practitioners to report most recent innovations and developments, summarize state-of-the-art, and exchange ideas and advances in all aspects of systems science and engineering, human machine systems, and cybernetics. Advances in these fields have increasing importance in the creation of intelligent environments involving technologies interacting with humans to provide an enriching experience and thereby improve quality of life. Papers related to the conference theme are solicited, including theories, methodologies, and emerging applications. Contributions to theory and practice, including but not limited to the following technical areas, are invited.



Periodicals related to State feedback

Back to Top

Automatic Control, IEEE Transactions on

The theory, design and application of Control Systems. It shall encompass components, and the integration of these components, as are necessary for the construction of such systems. The word `systems' as used herein shall be interpreted to include physical, biological, organizational and other entities and combinations thereof, which can be represented through a mathematical symbolism. The Field of Interest: shall ...


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Circuits and Systems II: Express Briefs, IEEE Transactions on

Part I will now contain regular papers focusing on all matters related to fundamental theory, applications, analog and digital signal processing. Part II will report on the latest significant results across all of these topic areas.


Communications, IEEE Transactions on

Telephone, telegraphy, facsimile, and point-to-point television, by electromagnetic propagation, including radio; wire; aerial, underground, coaxial, and submarine cables; waveguides, communication satellites, and lasers; in marine, aeronautical, space and fixed station services; repeaters, radio relaying, signal storage, and regeneration; telecommunication error detection and correction; multiplexing and carrier techniques; communication switching systems; data communications; and communication theory. In addition to the above, ...


Computational Intelligence Magazine, IEEE

The IEEE Computational Intelligence Magazine (CIM) publishes peer-reviewed articles that present emerging novel discoveries, important insights, or tutorial surveys in all areas of computational intelligence design and applications.



Most published Xplore authors for State feedback

Back to Top

Xplore Articles related to State feedback

Back to Top

A necessary and sufficient condition for feedback stabilization in a factorial ring

IEEE Transactions on Automatic Control, 1984

The necessity for a coprime fractional representation of a plant, in order to completely parametrize all stabilizing compensators by the Youla theory, is examined. It is shown that the coprimeness is necessary for systems in a factorial ring, a class inclusive of multidimensional scalar systems. Some observations on partial-state transfer functions in the feedback configuration are found to be useful ...


Control of unstable steady states by time-delayed feedback methods

Proceedings. 2005 International Conference Physics and Control, 2005., 2005

None


Session: decoding of trellis codes

1988 IEEE International Symposium on Information Theory., 1988

The following topics are dealt with: long-constraint-length Viterbi decoding; linear complexity decoding; convolutional codes; intersymbol interference channels; syndrome sequential decoding; and path memory simplification by metric normalisation.<<ETX>>


Small signal analysis of the LCC-type parallel resonant converter using discrete time domain modeling

IEEE Transactions on Industrial Electronics, 1995

Discrete state-space modeling of the LCC-type parallel resonant power converter is presented. Using these large signal equations, small signal modeling of the power converter is obtained. Multiple loops have been used for the closed loop operation. State variable feedback control has been integrated with the linear small signal state-space model and the associated control aspects are studied. The small signal ...


Linear regulators and observers

IEEE Transactions on Automatic Control, 1973

The design of a regulator system using a constant gain observer in the feedback loop is discussed. By examining the poles of the closed-loop plant and observer, it is explicitly clear that the closed-loop response is jointly determined by the plant and observer poles and zeros.



Educational Resources on State feedback

Back to Top

IEEE-USA E-Books

  • A necessary and sufficient condition for feedback stabilization in a factorial ring

    The necessity for a coprime fractional representation of a plant, in order to completely parametrize all stabilizing compensators by the Youla theory, is examined. It is shown that the coprimeness is necessary for systems in a factorial ring, a class inclusive of multidimensional scalar systems. Some observations on partial-state transfer functions in the feedback configuration are found to be useful in showing the necessity.

  • Control of unstable steady states by time-delayed feedback methods

    None

  • Session: decoding of trellis codes

    The following topics are dealt with: long-constraint-length Viterbi decoding; linear complexity decoding; convolutional codes; intersymbol interference channels; syndrome sequential decoding; and path memory simplification by metric normalisation.<<ETX>>

  • Small signal analysis of the LCC-type parallel resonant converter using discrete time domain modeling

    Discrete state-space modeling of the LCC-type parallel resonant power converter is presented. Using these large signal equations, small signal modeling of the power converter is obtained. Multiple loops have been used for the closed loop operation. State variable feedback control has been integrated with the linear small signal state-space model and the associated control aspects are studied. The small signal state-space model has been used to study the small signal behavior of the power converter for open loop and closed loop operation for parameters like control to output transfer function, audio- susceptibility and output impedance. Key theoretical results have been experimentally verified.

  • Linear regulators and observers

    The design of a regulator system using a constant gain observer in the feedback loop is discussed. By examining the poles of the closed-loop plant and observer, it is explicitly clear that the closed-loop response is jointly determined by the plant and observer poles and zeros.

  • Inherent design limitations for linear sampled-data feedback systems

    In this paper, we develop a theory of design limitations for sampled-data feedback systems wherein we consider the response of the analog system output. To do this, we use the fact that the steady state response of a hybrid feedback system to a sinusoidal input consists of a fundamental component at the frequency of the input together with infinitely many harmonics at frequencies spaced integer multiples of the sampling frequency away from the fundamental. This fact allows us to define fundamental sensitivity and complementary sensitivity functions that relate the fundamental component of the response to the input signal. These sensitivity and complementary sensitivity functions must satisfy integral relations analogous to the Bode and Poisson integrals for purely analog systems. The relations show, for example, that design limitations due to nonminimum phase zeros of the analog plant constrain the response of the sampled-data feedback system regardless of whether the discretized system is minimum phase and independently of the choice of hold function.

  • Correction to "Simultaneous stabilization via static output feedback and state feedback"

    In the above-mentioned paper (ibiid., vol. 44, pp. 1277-1282, June 1999), the address for the first author was listed incorrectly. The appropriate contact information appears herein.

  • Output regulation for parabolic distributed parameter systems: set point control

    In this paper we state our recent solvability result for the state feedback regulator problem for distributed parameter systems and present two examples in set point control using this methodology for a one dimensional heat equation. In addition, we discuss some computational issues associated with the explicit implementation of the feedback design strategies.

  • Stabilization of switched linear systems with state multiple time delays

    In this paper, the problem of stabilization for consecutive switched system with multiple time-delays is studied. The new multiply time-delays continuous- time switched system stability condition is obtained by designing state feedback controller. The condition is considered by Lyapunov function. The paper not only considered the continuous-time multiple time-delays state feedback system case, but also output feedback system case. At the same time, new criterion of stabilization has been used the same method. At last, the validity and applicability of the proposed approach are successfully demonstrated through simulations.

  • An algorithm for computation of state variable feedback gain

    In this paper an algorithm for computing the state variable feedback gain is presented. The proposed algorithm is developed in the context of a generalized state feedback controller design method that exhibits a computationally attractive scheme. An example is also given to illustrate the application of proposed algorithm.



Standards related to State feedback

Back to Top

No standards are currently tagged "State feedback"