Conferences related to Schottky gate field effect transistors

Back to Top

2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)

Energy conversion and conditioning technologies, power electronics, adjustable speed drives and their applications, power electronics for smarter grid, energy efficiency,technologies for sustainable energy systems, converters and power supplies


2020 IEEE International Electron Devices Meeting (IEDM)

the IEEE/IEDM has been the world's main forum for reporting breakthroughs in technology, design, manufacturing, physics and the modeling of semiconductors and other electronic devices. Topics range from deep submicron CMOS transistors and memories to novel displays and imagers, from compound semiconductor materials to nanotechnology devices and architectures, from micromachined devices to smart -power technologies, etc.


2020 IEEE/MTT-S International Microwave Symposium (IMS)

The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2036 IEEE/MTT-S International Microwave Symposium - IMS 2036

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2031 IEEE/MTT-S International Microwave Symposium - IMS 2031

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2029 IEEE/MTT-S International Microwave Symposium - IMS 2029

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2026 IEEE/MTT-S International Microwave Symposium - IMS 2026

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2025 IEEE/MTT-S International Microwave Symposium - IMS 2025

    The IEEE International Microwave Symposium (IMS) is the world s foremost conferencecovering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies;encompassing everything from basic technologies to components to systems including thelatest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulationand more. The IMS includes technical and interactive sessions, exhibits, student competitions,panels, workshops, tutorials, and networking events.

  • 2024 IEEE/MTT-S International Microwave Symposium - IMS 2024

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2021 IEEE/MTT-S International Microwave Symposium - IMS 2021

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.

  • 2019 IEEE/MTT-S International Microwave Symposium - IMS 2019

    Comprehensive symposium on microwave theory and techniques including active and passive circuit components, theory and microwave systems.

  • 2018 IEEE/MTT-S International Microwave Symposium - IMS 2018

    Microwave theory and techniques, RF/microwave/millimeter-wave/terahertz circuit design and fabrication technology, radio/wireless communication.

  • 2017 IEEE/MTT-S International Microwave Symposium - IMS 2017

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.

  • 2016 IEEE/MTT-S International Microwave Symposium - IMS 2016

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2015 IEEE/MTT-S International Microwave Symposium - MTT 2015

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics. The IMS includes technical sessions, both oral and interactive, worksh

  • 2014 IEEE/MTT-S International Microwave Symposium - MTT 2014

    IMS2014 will cover developments in microwave technology from nano devices to system applications. Technical paper sessions, interactive forums, plenary and panel sessions, workshops, short courses, industrial exhibits, and a wide array of other technical activities will be offered.

  • 2013 IEEE/MTT-S International Microwave Symposium - MTT 2013

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter -wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2012 IEEE/MTT-S International Microwave Symposium - MTT 2012

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2011 IEEE/MTT-S International Microwave Symposium - MTT 2011

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010

    Reports of research and development at the state-of-the-art of the theory and techniques related to the technology and applications of devices, components, circuits, modules and systems in the RF, microwave, millimeter-wave, submillimeter-wave and Terahertz ranges of the electromagnetic spectrum.

  • 2009 IEEE/MTT-S International Microwave Symposium - MTT 2009

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2008 IEEE/MTT-S International Microwave Symposium - MTT 2008

  • 2007 IEEE/MTT-S International Microwave Symposium - MTT 2007

  • 2006 IEEE/MTT-S International Microwave Symposium - MTT 2006

  • 2005 IEEE/MTT-S International Microwave Symposium - MTT 2005

  • 2004 IEEE/MTT-S International Microwave Symposium - MTT 2004

  • 2003 IEEE/MTT-S International Microwave Symposium - MTT 2003

  • 2002 IEEE/MTT-S International Microwave Symposium - MTT 2002

  • 2001 IEEE/MTT-S International Microwave Symposium - MTT 2001

  • 2000 IEEE/MTT-S International Microwave Symposium - MTT 2000

  • 1999 IEEE/MTT-S International Microwave Symposium - MTT '99

  • 1998 IEEE/MTT-S International Microwave Symposium - MTT '98

  • 1997 IEEE/MTT-S International Microwave Symposium - MTT '97

  • 1996 IEEE/MTT-S International Microwave Symposium - MTT '96


2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia)

1. Power Electronic Devices (Si and Wide band-gap) and Applications, 2. Power electronic packaging and integration, 3. Modeling, Simulation and EMI, 4. Lighting Technologies and Applications, 5. Wireless Power Transfer, 6. Uncontrolled Rectifiers and AC/DC Converters, 7. AC/AC Converters, 8. DC/AC Inverters, 9. DC/DC Converters, 10. Multilevel Power Converters, 11. Electric Machines, Actuators and Sensors, 12. Motor Control and Drives, 13. Sensorless and Sensor-Reduction Control, 14. Renewable Energy and Distributed Generation Systems, 15. Smart/Micro Grid, 16. DC Distribution 17. Power Quality (or Power Electronics for Utility Interface), 18. Energy Storage and Management Systems, 19. Power Electronics for Transportation Electrification, 20. Reliability, diagnosis, prognosis and protection, 21. High Voltage DC Transmission, 22. Other Selected Topics in Power Electronics

  • 2015 IEEE 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)

    Power electronics, renewable energy, electric vehicle, smart grid

  • 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 ECCE-ASIA)

    The seventh International Power Electronics Conference, IPEC-Hiroshima 2014 -ECCE Asia-, will be held from May 18 to May 21, 2014 in Hiroshima, Japan. The conference venue will be the International Conference Center Hiroshima, which is located in Hiroshima Peace Memorial Park. Power electronics has been providing numerous new technologies in the fields of electric energy conversion and motor drive systems for more than 40 years. In recent years, global energy and environmental issues are becoming more serious and power electronics is expected to play a key role in solving such problems. The IPEC-Hiroshima 2014 -ECCE Asia- will provide a unique opportunity for researchers, engineers, and academics from all over the world to present and exchange the latest information on power electronics, motor drives, and related subjects.

  • 2011 IEEE 8th International Conference on Power Electronics & ECCE Asia (ICPE 2011- ECCE Asia)

    01. Power Semiconductor Devices and Packaging 02. Modeling, Simulation, EMI and Reliability 03. Electric Machines, Actuators and Sensors 04. Motor Control and Drives 05. Sensorless Control 06. Renewable Green Energy (Wind, Solar, Tidal Power Generation) 07. Micro Grid and Distributed Generation 08. Electric Propulsion System (EV, Train, Electric Ship) 09. Electric and Hybrid Vehicles 10. Power Supplies and EV Chargers 11. Power Electronics and Drives for Home Appliance 12. Power Elect

  • 2007 7th International Conference on Power Electronics (ICPE)

    - Power Semiconductor Devices - DC-DC Converters - Inverters and Inverter Control Techniques - Motor Drives - Rectifiers and AC-AC Converters - Renewable Energy - Power Quality and Utility Applications - Automotive Applications and Traction Drives - Energy Storage - Control Techniques Applied to Power Electronics - Modeling, Analysis, and Simulation - Consumer Applications - Other Power Applications


2019 IEEE Energy Conversion Congress and Exposition (ECCE)

IEEE-ECCE 2019 brings together practicing engineers, researchers, entrepreneurs and other professionals for interactive and multi-disciplinary discussions on the latest advances in energy conversion technologies. The Conference provides a unique platform for promoting your organization.

  • 2018 IEEE Energy Conversion Congress and Exposition (ECCE)

    The scope of ECCE 2018 includes all technical aspects of research, design, manufacture, application and marketing of devices, components, circuits and systems related to energyconversion, industrial power and power electronics.

  • 2017 IEEE Energy Conversion Congress and Exposition (ECCE)

    ECCE is the premier global conference covering topics in energy conversion from electric machines, power electronics, drives, devices and applications both existing and emergent

  • 2016 IEEE Energy Conversion Congress and Exposition (ECCE)

    The Energy Conversion Congress and Exposition (ECCE) is focused on research and industrial advancements related to our sustainable energy future. ECCE began as a collaborative effort between two societies within the IEEE: The Power Electronics Society (PELS) and the Industrial Power Conversion Systems Department (IPCSD) of the Industry Application Society (IAS) and has grown to the premier conference to discuss next generation technologies.

  • 2015 IEEE Energy Conversion Congress and Exposition

    The scope of ECCE 2015 includes all technical aspects of research, design, manufacture, application and marketing of devices, components, circuits and systems related to energy conversion, industrial power and power electronics.

  • 2014 IEEE Energy Conversion Congress and Exposition (ECCE)

    Those companies who have an interest in selling to: research engineers, application engineers, strategists, policy makers, and innovators, anyone with an interest in energy conversion systems and components.

  • 2013 IEEE Energy Conversion Congress and Exposition (ECCE)

    The scope of the congress interests include all technical aspects of the design, manufacture, application and marketing of devices, components, circuits and systems related to energy conversion, industrial power conversion and power electronics.

  • 2012 IEEE Energy Conversion Congress and Exposition (ECCE)

    The IEEE Energy Conversion Congress and Exposition (ECCE) will be held in Raleigh, the capital of North Carolina. This will provide a forum for the exchange of information among practicing professionals in the energy conversion business. This conference will bring together users and researchers and will provide technical insight as well.

  • 2011 IEEE Energy Conversion Congress and Exposition (ECCE)

    IEEE 3rd Energy Conversion Congress and Exposition follows the inagural event held in San Jose, CA in 2009 and 2nd meeting held in Atlanta, GA in 2010 as the premier conference dedicated to all aspects of energy processing in industrial, commercial, transportation and aerospace applications. ECCE2011 has a strong empahasis on renewable energy sources and power conditioning, grid interactions, power quality, storage and reliability.

  • 2010 IEEE Energy Conversion Congress and Exposition (ECCE)

    This conference covers all areas of electrical and electromechanical energy conversion. This includes power electrics, power semiconductors, electric machines and drives, components, subsystems, and applications of energy conversion systems.

  • 2009 IEEE Energy Conversion Congress and Exposition (ECCE)

    The scope of the conference include all technical aspects of the design, manufacture, application and marketing of devices, circuits, and systems related to electrical energy conversion technology


More Conferences

Periodicals related to Schottky gate field effect transistors

Back to Top

Circuits and Systems I: Regular Papers, IEEE Transactions on

Part I will now contain regular papers focusing on all matters related to fundamental theory, applications, analog and digital signal processing. Part II will report on the latest significant results across all of these topic areas.


Education, IEEE Transactions on

Educational methods, technology, and programs; history of technology; impact of evolving research on education.


Electron Device Letters, IEEE

Publishes original and significant contributions relating to the theory, design, performance and reliability of electron devices, including optoelectronic devices, nanoscale devices, solid-state devices, integrated electronic devices, energy sources, power devices, displays, sensors, electro-mechanical devices, quantum devices and electron tubes.


Electron Devices, IEEE Transactions on

Publishes original and significant contributions relating to the theory, design, performance and reliability of electron devices, including optoelectronics devices, nanoscale devices, solid-state devices, integrated electronic devices, energy sources, power devices, displays, sensors, electro-mechanical devices, quantum devices and electron tubes.


Industrial Electronics, IEEE Transactions on

Theory and applications of industrial electronics and control instrumentation science and engineering, including microprocessor control systems, high-power controls, process control, programmable controllers, numerical and program control systems, flow meters, and identification systems.


More Periodicals

Most published Xplore authors for Schottky gate field effect transistors

Back to Top

Xplore Articles related to Schottky gate field effect transistors

Back to Top

Bipolar conduction and drain-induced barrier thinning in carbon nanotube FETs

IEEE Transactions on Nanotechnology, 2003

The drain current-voltage (I-V) characteristics of Schottky-barrier carbon nanotube field-effect transistors (FETs) are computed via a self-consistent solution to the two-dimensional potential profile, the electron and hole charges in the nanotube, and the electron and hole currents. These out-of- equilibrium results are obtained by allowing splitting of both the electron and hole quasi-Fermi levels to occur at the source and ...


Analysis and characterization of the hybrid Schottky injection field effect transistor

1986 International Electron Devices Meeting, 1986

A new MOS-gated power transistor, the Hybrid Schottky INjection Field Effect Transistor (HSINFET), is described in this paper. The fabrication process is similar to that of an LDMOS transistor but with the high-low (n<sup>+</sup>n<sup>-</sup>) "ohmic" contact at the drain replaced by a parallel combination of a Schottky barrier and a pn junction diode. This device provides a current handling capability ...


Seamless transition from the single-electron regime to field-effect transistor operation of nanoscale Schottky-barrier FETs

2006 64th Device Research Conference, 2006

None


Carbon nanotube electronics and optoelectronics

IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004., 2004

We discuss recent developments in our research on single carbon nanotube field-effect transistors and light emitting and detecting devices. Specifically, we show that by using either double gate devices, or selective charge-transfer doping, we can convert Schottky barrier CNTFETs into bulk- switched devices, ambipolar CNTFETs into unipolar devices, while at the same time enhance both the ON and OFF state ...


An intrinsic delay extraction method for Schottky gate field effect transistors

IEEE Electron Device Letters, 2004

This letter reports a new method for extracting the intrinsic transit delay associated with the carrier transport under the gate of field-effect transistors (FETs). With this method, the parasitic charging time is ruled out by the de-embedding used to strip the pad parasitics. Therefore, the intrinsic transit delay and the drain delay associated with the extended depletion region toward drain ...


More Xplore Articles

Educational Resources on Schottky gate field effect transistors

Back to Top

IEEE-USA E-Books

  • Bipolar conduction and drain-induced barrier thinning in carbon nanotube FETs

    The drain current-voltage (I-V) characteristics of Schottky-barrier carbon nanotube field-effect transistors (FETs) are computed via a self-consistent solution to the two-dimensional potential profile, the electron and hole charges in the nanotube, and the electron and hole currents. These out-of- equilibrium results are obtained by allowing splitting of both the electron and hole quasi-Fermi levels to occur at the source and drain contacts to the tube, respectively. The interesting phenomena of bipolar conduction in a FET, and of drain-induced barrier thinning (DIBT) are observed. These phenomena are shown to add a breakdown-like feature to the drain I-V characteristic. It is also shown that a more traditional, saturating-type characteristic can be obtained by workfunction engineering of the source and drain contacts.

  • Analysis and characterization of the hybrid Schottky injection field effect transistor

    A new MOS-gated power transistor, the Hybrid Schottky INjection Field Effect Transistor (HSINFET), is described in this paper. The fabrication process is similar to that of an LDMOS transistor but with the high-low (n<sup>+</sup>n<sup>-</sup>) "ohmic" contact at the drain replaced by a parallel combination of a Schottky barrier and a pn junction diode. This device provides a current handling capability 3.5 times larger than that of the LDMOS transistor but still maintains a comparable switching speed. The forward conduction characteristics of the HSINFET are investigated and modeled using two-dimensional numerical simulations. Experimental results comparing the HSINFET with the LDMOST, Lateral Insulated Gate Transistor (LIGT), and Schottky INjection Field Effect Transistor (SINFET), on the basis of current handling capability and switching speed, are given.

  • Seamless transition from the single-electron regime to field-effect transistor operation of nanoscale Schottky-barrier FETs

    None

  • Carbon nanotube electronics and optoelectronics

    We discuss recent developments in our research on single carbon nanotube field-effect transistors and light emitting and detecting devices. Specifically, we show that by using either double gate devices, or selective charge-transfer doping, we can convert Schottky barrier CNTFETs into bulk- switched devices, ambipolar CNTFETs into unipolar devices, while at the same time enhance both the ON and OFF state device characteristics. Under ambipolar conditions CNTFETs can be used as light emitters via e-h recombination, while light irradiation of CNTFETs leads to photoconductivity. Thus, the CNTFET can be used as a high performance switch, a light source and a light detector.

  • An intrinsic delay extraction method for Schottky gate field effect transistors

    This letter reports a new method for extracting the intrinsic transit delay associated with the carrier transport under the gate of field-effect transistors (FETs). With this method, the parasitic charging time is ruled out by the de-embedding used to strip the pad parasitics. Therefore, the intrinsic transit delay and the drain delay associated with the extended depletion region toward drain electrode can be separated without the influence of the parasitic charging time, as proven by an analysis of short-channel InP-based high electron mobility transistors. The method is applicable to any type of Schottky-gate FETs and could be helpful for studying the effective carrier velocity in the gate region of FETs.

  • New Silicon Carbide Schottky-gate Bipolar Mode Field Effect Transistor (SiC SBMFET) without PN Junction

    The bipolar mode field effect transistors (BMFETs) using P+ gates on N-type silicon substrate are the most commonly used power devices for high-current medium-power switching applications and as optically controlled switches. These are dual gate devices with deep P+ gate junctions, which require large thermal cycles for diffusion. In this paper, we propose a novel Schottky-gate BMFET (SBMFET) using P-type 4H silicon-carbide, a wide bandgap material, in which the PN junction gates are replaced by the Schottky gates. We have studied the characteristics of this device using two-dimensional numerical simulation. Our results demonstrate for the first time that the P-SiC Schottky-gate BMFET has very low ON voltage drop, good output characteristics, a reasonable current gain and a blocking voltage greater than 1000 V

  • Silicon Oxide enhanced Schottky gate In0.53Ga0.47As FET's with a self-aligned recessed gate structure

    We present the fabrication and characterization of an In0.53Ga0.47As enhanced Schottky gate FET with a self-aligned recessed gate structure. A thin layer of e-beam evaporated silicon oxide was used to reduce the gate leakage current. For a n-channel doping of 8 × 1016cm-3and a gate length of 1.5 µm, these devices showed good pinchoff characteristics with transconductances of 150 mS/mm. The effective velocity of electrons at current saturation is deduced to be 2.4 × 107cm/s at the drain end of the gate. At 3 GHz these devices have a maximum available gain of 10 dB, decreasing to 6 dB at 6 GHz.

  • A Silicon Vertical JFET Compatible with Standard 0.7 μm CMOS Technology

    This paper reports the fabrication of vertical junction field-effect transistors (v-JFETs) with standard 0.7 /sp mu/m CMOS technology. The process flow is described and the device feasibility is demonstrated. The measured electrical and frequency performances are in good agreement with the simulation results when parasitic capacitances, inherent to the non-optimised layout presently used, are taken into account. It is shown that, with a specific interdigited mask design, a transit frequency higher than 10 GHz could be achieved with a 1.6 μm periodicity.

  • Towards compact modelling of Schottky barrier CNTFET

    Recently, Carbon nanotube field-effect transistors (CNTFETs) have been studied as an interesting alternative to CMOS transistors. CNTFETs can be fabricated with Ohmic or Schottky type contacts. In this paper, we present a compact model for the tunnel current trough a Schottky barrier based on the Wentzel- Kramers-Brillouin, "WKB" approximation of the transmission coefficient [1]. The results obtained with this model are compared with the measured I-V characteristics of a CNT Schottky diode device [2] and show good agreement.

  • Distributive nature of gate current and negative transconductance in heterostructure field-effect transistors

    Experimental data showing that the dependence of the gate current on the drain voltage in enhancement-mode heterostructure field-effect transistors changes qualitatively when the gate voltage is varied from below to above threshold are presented. The data lead to the conclusion that for gate voltages higher than the threshold voltage and drain voltages larger than the drain saturation voltage, most of the potential drop occurs in a small region near the drain end of the channel. The gate current is distributed along the channel so that electrons in the channel are diverted toward the gate. A model is proposed that takes into account such a distribution of the gate current along the channel. The distributive nature of the gate current leads to negative transconductance in heterostructure field-effect transistors at high gate voltages. Negative transconductance reaching -125 mS/mm in 1- mu m gate devices is observed, and an equivalent circuit model is proposed that describes the dependence of the drain current on the gate voltage in good agreement with present experimental data.<<ETX>>



Standards related to Schottky gate field effect transistors

Back to Top

No standards are currently tagged "Schottky gate field effect transistors"


Jobs related to Schottky gate field effect transistors

Back to Top