Conferences related to Orthopedic procedures

Back to Top

2021 IEEE International Conference on Mechatronics (ICM)

CM focuses on recent developments and future prospects related to the synergetic integration of mechanics, electronics, and information processing.


2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting

The joint meeting is intended to provide an international forum for the exchange of information on state of the art research in the area of antennas and propagation, electromagnetic engineering and radio science


2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invitedsessions of the latest significant findings and developments in all the major fields of biomedical engineering.Submitted papers will be peer reviewed. Accepted high quality papers will be presented in oral and postersessions, will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE


2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020)

The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2020 will be the 17th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2020 meeting will continue this tradition of fostering cross-fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging.ISBI 2019 will be the 16th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2019 meeting will continue this tradition of fostering cross fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2018 will be the 15th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2018 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2017 will be the 14th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2017 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forumfor the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2016 willbe the thirteenth meeting in this series. The previous meetings have played a leading role in facilitatinginteraction between researchers in medical and biological imaging. The 2016 meeting will continue thistradition of fostering crossfertilization among different imaging communities and contributing to an integrativeapproach to biomedical imaging across all scales of observation.

  • 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2015 will be the 12th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2014 will be the eleventh meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013)

    To serve the biological, biomedical, bioengineering, bioimaging and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2011 IEEE 8th International Symposium on Biomedical Imaging (ISBI 2011)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2010 IEEE 7th International Symposium on Biomedical Imaging (ISBI 2010)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2009 IEEE 6th International Symposium on Biomedical Imaging (ISBI 2009)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2008 IEEE 5th International Symposium on Biomedical Imaging (ISBI 2008)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2007 IEEE 4th International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2007)

  • 2006 IEEE 3rd International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2006)

  • 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2004)

  • 2002 1st IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2002)


2020 IEEE Haptics Symposium (HAPTICS)

Held since 1992, the IEEE Haptics Symposium (HAPTICS) is a vibrant interdisciplinary forum where psychophysicists, engineers, and designers come together to share advances, spark new collaborations, and envision a future that benefits from rich physical interactions between humans and computers, generated through haptic (force and tactile) devices.

  • 2018 IEEE Haptics Symposium (HAPTICS)

    Held since 1992, the IEEE Haptics Symposium (HAPTICS) is a vibrant interdisciplinary forum where psychophysicists, engineers, and designers come together to share advances, spark new collaborations, and envision a future that benefits from rich physical interactions between humans and computers, generated through haptic (force and tactile) devices.

  • 2016 IEEE Haptics Symposium (HAPTICS)

    Held since 1992, the IEEE Haptics Symposium (HAPTICS) is a vibrant interdisciplinary forum where psychophysicists, engineers, and designers come together to share advances, spark new collaborations, and envision a future that benefits from rich physical interactions between humans and computers, generated through haptic (force and tactile) devices. In 2016, this conference will be held in central Philadelphia, one of the most historic and beautiful cities in North America. HAPTICS 2016 will be a four-day conference with a full day of tutorials and workshops and three days of conference activities including technical paper presentations and hands-on demonstrations.Features:ExhibitsWorkshops and TutorialsHands-on Demonstrations

  • 2014 IEEE Haptics Symposium (HAPTICS)

    This conference brings together researchers in diverse engineering and human science disciplines who are interested in the design, analysis, and evaluation of systems that display haptic (force and touch) information to human operators, and the study of the human systems involved in haptic interacti

  • 2012 IEEE Haptics Symposium (HAPTICS)

    This conference brings together researchers in diverse engineering and human science disciplines who are interested in the design, analysis, and evaluation of systems that display haptic (force and touch) information to human operators, and the study of the human systems involved in haptic interaction.

  • 2010 IEEE Haptics Symposium (Formerly known as Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems)

    The Haptics Symposium is a bi-annual, single-track conference that brings together researchers who are advancing the human science, technology and design processes underlying haptic (force and tactile) interaction systems. Our community spans the disciplines of biomechanics, psychology, neurophysiology, engineering, human-computer interaction and computer science.

  • 2008 16th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (Haptics 2008)

    The Haptics Symposium is an annual, single-track conference that brings together researchers in diverse engineering and human science disciplines who are interested in the design, analysis, and evaluation of systems that display haptic (force and touch) information to human operators.

  • 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems


More Conferences

Periodicals related to Orthopedic procedures

Back to Top

Biomedical Circuits and Systems, IEEE Transactions on

The Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems ...


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Computer

Computer, the flagship publication of the IEEE Computer Society, publishes peer-reviewed technical content that covers all aspects of computer science, computer engineering, technology, and applications. Computer is a resource that practitioners, researchers, and managers can rely on to provide timely information about current research developments, trends, best practices, and changes in the profession.


Computer Graphics and Applications, IEEE

IEEE Computer Graphics and Applications (CG&A) bridges the theory and practice of computer graphics. From specific algorithms to full system implementations, CG&A offers a strong combination of peer-reviewed feature articles and refereed departments, including news and product announcements. Special Applications sidebars relate research stories to commercial development. Cover stories focus on creative applications of the technology by an artist or ...


Control Systems Technology, IEEE Transactions on

Serves as a compendium for papers on the technological advances in control engineering and as an archival publication which will bridge the gap between theory and practice. Papers will highlight the latest knowledge, exploratory developments, and practical applications in all aspects of the technology needed to implement control systems from analysis and design through simulation and hardware.


More Periodicals

Most published Xplore authors for Orthopedic procedures

Back to Top

Xplore Articles related to Orthopedic procedures

Back to Top

2A-4 Enhancement of Bone Surface Visualization from 3D Ultrasound Based on Local Phase Information

2006 IEEE Ultrasonics Symposium, 2006

Identification and localization of bone surfaces in ultrasound (US) images is an essential step in US-based image guided orthopedic procedures. However, US images often depict bones poorly compared to other medical imaging modalities, such as computed tomography (CT) or magnetic resonance (MR), because of speckle, reverberation, shadowing and other artifacts. As a result, accurate, robust and automatic localization of bone ...


Operating Room of the Future Orthopedic Perspective

2008 Cairo International Biomedical Engineering Conference, 2008

The complexity of orthopedic procedures has mounted with increasing numbers of minimally invasive surgeries. Lack of optimal patient outcomes persist despite new techniques and improved implants. While improved training for physicians can enhance patient outcomes, computer assisted surgery (CAS) has the capability to provide even greater benefits to the patient by increasing control and repeatability. Cutting edge technology fused with ...


Review on Design and Control Aspects of Robotic Shoulder Rehabilitation Orthoses

IEEE Transactions on Human-Machine Systems, 2017

Robotic rehabilitation devices are more frequently used for the physical therapy of people with upper limb weakness, which is the most common type of stroke-induced disability. Rehabilitation robots can provide customized, prolonged, intensive, and repetitive training sessions for patients with neurological impairments. In most cases, the robotic exoskeletons have to be aligned with the human joints and provide natural arm ...


3D Reconstruction of Patient Specific Bone Models from 2D Radiographs for Image Guided Orthopedic Surgery

2009 Digital Image Computing: Techniques and Applications, 2009

Three dimensional (3D) visualization of anatomy plays an important role in image guided orthopedic surgery and ultimately motivates minimally invasive procedures. However, direct 3D imaging modalities such as Computed Tomography (CT) are restricted to a minority of complex orthopedic procedures. Thus the diagnostics and planning of many interventions still rely on two dimensional (2D) radiographic images, where the surgeon has ...



Educational Resources on Orthopedic procedures

Back to Top

IEEE-USA E-Books

  • 2A-4 Enhancement of Bone Surface Visualization from 3D Ultrasound Based on Local Phase Information

    Identification and localization of bone surfaces in ultrasound (US) images is an essential step in US-based image guided orthopedic procedures. However, US images often depict bones poorly compared to other medical imaging modalities, such as computed tomography (CT) or magnetic resonance (MR), because of speckle, reverberation, shadowing and other artifacts. As a result, accurate, robust and automatic localization of bone in US images remains a challenge. In this paper, we propose the use of phase congruency, a feature invariant to changes in image brightness or contrast, to enhance bone surface localization and visualization in 3D US images. The potential of the method is demonstrated through experiments in vitro and in vivo, with the results compared to conventional gradient- and edge-based bone localization approaches. These preliminary results show good performance of the proposed technique, suggesting it has promise in a clinical setting

  • Operating Room of the Future Orthopedic Perspective

    The complexity of orthopedic procedures has mounted with increasing numbers of minimally invasive surgeries. Lack of optimal patient outcomes persist despite new techniques and improved implants. While improved training for physicians can enhance patient outcomes, computer assisted surgery (CAS) has the capability to provide even greater benefits to the patient by increasing control and repeatability. Cutting edge technology fused with new computerized techniques facilitates a full cycle of implant design and development by providing surgical preplanning and intraoperative guidance followed by post- operative gait analysis. In the pre-operative phase, these technologies can reconstruct patient specific bone models, automate cutting plane placement, and highlight anatomical abnormalities. In the intra-operative phase, the state-of-the-art CAS systems virtualize surgical protocols, provide real-time hyper-resolution micro-sensor feedback in ligament balancing, and wireless navigation guidance. Finally, in post-operative scenarios, disruptive technologies enable improved implant design through acquisition and analysis of 3D kinematic gait lab data. By introducing novel technologies and advanced computerized methods into the operating room (OR), the next generation of CAS systems will further surgeons' ability to control positive patient outcomes.

  • Review on Design and Control Aspects of Robotic Shoulder Rehabilitation Orthoses

    Robotic rehabilitation devices are more frequently used for the physical therapy of people with upper limb weakness, which is the most common type of stroke-induced disability. Rehabilitation robots can provide customized, prolonged, intensive, and repetitive training sessions for patients with neurological impairments. In most cases, the robotic exoskeletons have to be aligned with the human joints and provide natural arm movements. This is a challenging task to achieve for one of the most biomechanically complex joints of human body, i.e., the shoulder. Therefore, specific considerations have been made in the development of various existing robotic shoulder rehabilitation orthoses. Different types of actuation, degrees of freedom (DOFs), and control strategies have been utilized for the development of these shoulder rehabilitation orthoses. This paper presents a comprehensive review of these shoulder rehabilitation orthoses. Recent advancements in the mechanism design, their advantages and disadvantages, overview of hardware, actuation system, and power transmission are discussed in detail with the emphasis on the assisted DOFs for shoulder motion. A brief overview of control techniques and clinical studies conducted with the developed robotic shoulder orthoses is also presented. Finally, current challenges and directions of future development for robotic shoulder rehabilitation orthoses are provided at the end of this paper.

  • 3D Reconstruction of Patient Specific Bone Models from 2D Radiographs for Image Guided Orthopedic Surgery

    Three dimensional (3D) visualization of anatomy plays an important role in image guided orthopedic surgery and ultimately motivates minimally invasive procedures. However, direct 3D imaging modalities such as Computed Tomography (CT) are restricted to a minority of complex orthopedic procedures. Thus the diagnostics and planning of many interventions still rely on two dimensional (2D) radiographic images, where the surgeon has to mentally visualize the anatomy of interest. The purpose of this paper is to apply and validate a bi- planar 3D reconstruction methodology driven by prominent bony anatomy edges and contours identified on orthogonal radiographs. The results obtained through the proposed methodology are benchmarked against 3D CT scan data to assess the accuracy of reconstruction. The human femur has been used as the anatomy of interest throughout the paper. The novelty of this methodology is that it not only involves the outer contours of the bony anatomy in the reconstruction but also several key interior edges identifiable on radiographic images. Hence, this framework is not simply limited to long bones, but is generally applicable to a multitude of other bony anatomies as illustrated in the results section.



Standards related to Orthopedic procedures

Back to Top

No standards are currently tagged "Orthopedic procedures"


Jobs related to Orthopedic procedures

Back to Top