Magnetic separation

View this topic in
Magnetic separation is a process in which magnetically susceptible material is extracted from a mixture using a magnetic force. This separation technique can be useful in mining iron as it is attracted to a magnet. (Wikipedia.org)






Conferences related to Magnetic separation

Back to Top

2023 Annual International Conference of the IEEE Engineering in Medicine & Biology Conference (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invitedsessions of the latest significant findings and developments in all the major fields of biomedical engineering.Submitted full papers will be peer reviewed. Accepted high quality papers will be presented in oral and poster sessions,will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE.


2021 IEEE Pulsed Power Conference (PPC)

The Pulsed Power Conference is held on a biannual basis and serves as the principal forum forthe exchange of information on pulsed power technology and engineering.


2020 IEEE International Conference on Plasma Science (ICOPS)

IEEE International Conference on Plasma Science (ICOPS) is an annual conference coordinated by the Plasma Science and Application Committee (PSAC) of the IEEE Nuclear & Plasma Sciences Society.


2020 IEEE International Magnetic Conference (INTERMAG)

INTERMAG is the premier conference on all aspects of applied magnetism and provides a range of oral and poster presentations, invited talks and symposia, a tutorial session, and exhibits reviewing the latest developments in magnetism.


2020 IEEE/MTT-S International Microwave Symposium (IMS)

The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2036 IEEE/MTT-S International Microwave Symposium - IMS 2036

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2031 IEEE/MTT-S International Microwave Symposium - IMS 2031

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2029 IEEE/MTT-S International Microwave Symposium - IMS 2029

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2026 IEEE/MTT-S International Microwave Symposium - IMS 2026

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2025 IEEE/MTT-S International Microwave Symposium - IMS 2025

    The IEEE International Microwave Symposium (IMS) is the world s foremost conferencecovering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies;encompassing everything from basic technologies to components to systems including thelatest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulationand more. The IMS includes technical and interactive sessions, exhibits, student competitions,panels, workshops, tutorials, and networking events.

  • 2024 IEEE/MTT-S International Microwave Symposium - IMS 2024

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2021 IEEE/MTT-S International Microwave Symposium - IMS 2021

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.

  • 2019 IEEE/MTT-S International Microwave Symposium - IMS 2019

    Comprehensive symposium on microwave theory and techniques including active and passive circuit components, theory and microwave systems.

  • 2018 IEEE/MTT-S International Microwave Symposium - IMS 2018

    Microwave theory and techniques, RF/microwave/millimeter-wave/terahertz circuit design and fabrication technology, radio/wireless communication.

  • 2017 IEEE/MTT-S International Microwave Symposium - IMS 2017

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.

  • 2016 IEEE/MTT-S International Microwave Symposium - IMS 2016

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2015 IEEE/MTT-S International Microwave Symposium - MTT 2015

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics. The IMS includes technical sessions, both oral and interactive, worksh

  • 2014 IEEE/MTT-S International Microwave Symposium - MTT 2014

    IMS2014 will cover developments in microwave technology from nano devices to system applications. Technical paper sessions, interactive forums, plenary and panel sessions, workshops, short courses, industrial exhibits, and a wide array of other technical activities will be offered.

  • 2013 IEEE/MTT-S International Microwave Symposium - MTT 2013

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter -wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2012 IEEE/MTT-S International Microwave Symposium - MTT 2012

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2011 IEEE/MTT-S International Microwave Symposium - MTT 2011

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010

    Reports of research and development at the state-of-the-art of the theory and techniques related to the technology and applications of devices, components, circuits, modules and systems in the RF, microwave, millimeter-wave, submillimeter-wave and Terahertz ranges of the electromagnetic spectrum.

  • 2009 IEEE/MTT-S International Microwave Symposium - MTT 2009

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2008 IEEE/MTT-S International Microwave Symposium - MTT 2008

  • 2007 IEEE/MTT-S International Microwave Symposium - MTT 2007

  • 2006 IEEE/MTT-S International Microwave Symposium - MTT 2006

  • 2005 IEEE/MTT-S International Microwave Symposium - MTT 2005

  • 2004 IEEE/MTT-S International Microwave Symposium - MTT 2004

  • 2003 IEEE/MTT-S International Microwave Symposium - MTT 2003

  • 2002 IEEE/MTT-S International Microwave Symposium - MTT 2002

  • 2001 IEEE/MTT-S International Microwave Symposium - MTT 2001

  • 2000 IEEE/MTT-S International Microwave Symposium - MTT 2000

  • 1999 IEEE/MTT-S International Microwave Symposium - MTT '99

  • 1998 IEEE/MTT-S International Microwave Symposium - MTT '98

  • 1997 IEEE/MTT-S International Microwave Symposium - MTT '97

  • 1996 IEEE/MTT-S International Microwave Symposium - MTT '96


More Conferences

Periodicals related to Magnetic separation

Back to Top

Antennas and Propagation, IEEE Transactions on

Experimental and theoretical advances in antennas including design and development, and in the propagation of electromagnetic waves including scattering, diffraction and interaction with continuous media; and applications pertinent to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques.


Applied Superconductivity, IEEE Transactions on

Contains articles on the applications and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Power applications include magnet design as well asmotors, generators, and power transmission


Biomedical Circuits and Systems, IEEE Transactions on

The Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems ...


Biomedical Engineering, IEEE Reviews in

The IEEE Reviews in Biomedical Engineering will review the state-of-the-art and trends in the emerging field of biomedical engineering. This includes scholarly works, ranging from historic and modern development in biomedical engineering to the life sciences and medicine enabled by technologies covered by the various IEEE societies.


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


More Periodicals

Most published Xplore authors for Magnetic separation

Back to Top

No authors for "Magnetic separation"


Xplore Articles related to Magnetic separation

Back to Top

Radio Propagation

Indoor Wireless Communications: From Theory to Implementation, None

Radio wave propagation is a key topic for an in‐building wireless system designer, and has its foundations in electromagnetic theory principles. The existence of propagating electromagnetic waves can be predicted as a direct consequence of Maxwell's equations. Maxwell's curl equations contain constants of proportionality, which dictate the strengths of the fields. In free space, many types of waves can exist, ...


Background Theory

Fundamentals of Aperture Antennas and Arrays: From Theory to Design, Fabrication and Testing, None

This chapter provides some background theory and introduces notation in preparation for use throughout the remainder of this text. The equations that were devised by James Clerk Maxwell and placed in differential form by Oliver Heaviside and Heinrich Hertz are introduced. Heaviside, and independently Hertz, reduced these 20 equations to the four vector field equations that are essentially used today. ...


Battery booster coils for airplane-engine ignition systems

Electrical Engineering, 1944

THE use of battery booster coils and problems in connection therewith requires an understanding of engine ignition-system design and operation. Figure 1 illustrates a complete ignition system consisting of ignition switch, two magnetos, radio-shielded harness, spark plugs and booster magneto. One magneto is illustrated completely assembled, and the other in skeleton form showing electric and magnetic circuits.


A Review of Basic Electrostatics

Introduction to Numerical Electrostatics Using MATLAB, None

This introductory chapter provides a review of basic electrostatistics. It describes the terms charge, force, electric field and electric flux density, and explains Gauss's law. An ideal conductor of charge is a material in which the charge carriers are free to move about under the influence of electrostatic forces. The chapter also describes terms electric potential, gradient, capacitance, and energy ...


New automatic telephone equipment

Proceedings of the American Institute of Electrical Engineers, 1911

Automatic schemes for establishing connections between telephones were devised early in the history of the telephone movement and many of the first patents, which were issued for telephone inventions, were for devices which are the forefathers of the automatic equipment in use to-day.


More Xplore Articles

Educational Resources on Magnetic separation

Back to Top

IEEE.tv Videos

ASC-2014 SQUIDs 50th Anniversary: 4 of 6 - Keiji Enpuku
Niobium Manufacturing for Superconductivity - ASC-2014 Plenary series - 5 of 13 - Tuesday 2014/8/12
IEEE Magnetics Distinguished Lecture - Mitsuteru Inoue
A Discussion on Hard Drives
Perpendicular magnetic anisotropy: From ultralow power spintronics to cancer therapy
Magnetic Nanowires: Revolutionizing Hard Drives, RAM, and Cancer Treatment
IEEE Magnetics 2014 Distinguished Lectures - JONATHAN COKER
Magmites: Wireless Resonant Magnetic Microrobots
Spin Dynamics in Inhomogeneously Magnetized Systems - Teruo Ono: IEEE Magnetics Society Distinguished Lecture 2016
Magnetic Shield Implementation - EMC Society Demo
35 Years of Magnetic Heterostructures
High Magnetic Field Science and its Application in the US - ASC-2014 Plenary series - 10 of 13 - Friday 2014/8/15
Magnetic Materials and Magnetic Devices - Josep Fontcuberta: IEEE Magnetics Distinguished Lecture 2016
ISEC 2013 Special Gordon Donaldson Session: Remembering Gordon Donaldson - 6 of 7 - A high sensitive magnetometer system for natural magnetic field measurements
Dual-Core 60GHz Push-Push VCO - Vadim Issakov - RFIC Showcase 2018
IEEE Magnetics 2014 Distinguished Lectures - Tim St Pierre
Towards Logic-in-Memory circuits using 3D-integrated Nanomagnetic Logic - Fabrizio Riente: 2016 International Conference on Rebooting Computing
IMS 2015: Robert H. Caverly - Aspects of Magnetic Resonance Imaging
ISEC 2013 Special Gordon Donaldson Session: Remembering Gordon Donaldson - 5 of 7 - SQUID Instrumentation for Early Cancer Diagnostics
Nanoscale Magnetism with Picosecond Time Resolution and High Sensitivity - Hendrik Ohldag - IEEE Magnetics Distinguished Lecture

IEEE-USA E-Books

  • Radio Propagation

    Radio wave propagation is a key topic for an in‐building wireless system designer, and has its foundations in electromagnetic theory principles. The existence of propagating electromagnetic waves can be predicted as a direct consequence of Maxwell's equations. Maxwell's curl equations contain constants of proportionality, which dictate the strengths of the fields. In free space, many types of waves can exist, which satisfy Maxwell's equations; that is constitute valid solutions. Amongst the most popular ones are spherical, cylindrical and plane waves. Maxwell's curl equations also dictate special behaviour when impinging on a material. The chapter discusses the median path loss, fast fading, shadowing (slow fading) and building penetration loss. A deep understanding of the propagation mechanisms that affect link performance is thus essential if path loss and/or signal strength is to be predicted inside buildings with reasonable accuracy.

  • Background Theory

    This chapter provides some background theory and introduces notation in preparation for use throughout the remainder of this text. The equations that were devised by James Clerk Maxwell and placed in differential form by Oliver Heaviside and Heinrich Hertz are introduced. Heaviside, and independently Hertz, reduced these 20 equations to the four vector field equations that are essentially used today. For Heaviside, the concepts of fields, symmetry and vector notation were vital. The partial field pairs, satisfy separate sets of Maxwell's equations. The time‐averaged conservation of energy in the electromagnetic field is given by Poynting's theorem. The chapter also summarizes the important concepts of field duality, equivalent sources and image theory. Finally, radiation from elementary sources is investigated, and this allows a description of some basic radiation parameters as well as an introduction to mutual coupling.

  • Battery booster coils for airplane-engine ignition systems

    THE use of battery booster coils and problems in connection therewith requires an understanding of engine ignition-system design and operation. Figure 1 illustrates a complete ignition system consisting of ignition switch, two magnetos, radio-shielded harness, spark plugs and booster magneto. One magneto is illustrated completely assembled, and the other in skeleton form showing electric and magnetic circuits.

  • A Review of Basic Electrostatics

    This introductory chapter provides a review of basic electrostatistics. It describes the terms charge, force, electric field and electric flux density, and explains Gauss's law. An ideal conductor of charge is a material in which the charge carriers are free to move about under the influence of electrostatic forces. The chapter also describes terms electric potential, gradient, capacitance, and energy in an electric field. Later, Poisson's and Laplace's equations are explained. The chapter provides three examples of dielectric interfaces. It shows how the electrical properties of dipoles can be examined without getting entangled in considerations of dielectric interfaces. The chapter ends with a discussion of approximate numerical analysis.

  • New automatic telephone equipment

    Automatic schemes for establishing connections between telephones were devised early in the history of the telephone movement and many of the first patents, which were issued for telephone inventions, were for devices which are the forefathers of the automatic equipment in use to-day.

  • Fundamental Limits To Ion Beam Currents in Magnetic Isotope Separators and Related Systems

    None

  • Why Kp is such a good measure of magnetospheric convection

    The 3-hour magnetic activity index, Kp, is widely used for measuring the level of magnetospheric activity, and many magnetospheric properties are known to correlate with it. The common denominator for these different properties is the strength of the magnetospheric convection electric field, the large-scale electric field imposed across the magnetosphere by the flow of the magnetized solar wind past the Earth. While the relationship between Kp and the global convection field has long been known, the question of why the relationship exists has apparently not been addressed. In this report, it is proposed that because Kp is derived from magnetic variations obtained at subauroral stations, it is extremely sensitive to the latitudinal distance to the equatorial edge of the auroral region, where the principal causative currents flow. Since the auroral region maps to the plasma sheet in the magnetosphere, motion of the inner edge of the plasma sheet, which is determined by the strength of the convection field, causes significant changes in Kp. Thus, through its dependence on the latitude of the auroral current region, Kp can be viewed as a direct monitor of the strength of magnetospheric convection, explaining the success of previous Kp-dependent models of the global electric field.

  • A plasma filled tunable notch absorber microwave filter

    None

  • The 2D Scattering Equations for Dielectric Targets

    The behavior of the electromagnetic signal radiated by a ground-penetrating radar (GPR) and scattered by buried targets is governed by Maxwell's equations. So, in order to provide hopefully deep enough and self-consistent discussion of GPR data processing, this chapter starts from the beginning and provides the derivation of the whole formulation up to the migration and the linear inversion. This chapter describes the derivation of the scattering equations without considering the effect of the antennas, and the calculation of the incident field radiated by a filamentary current. It discusses plane wave spectrum and effective length of an electromagnetic source in a homogeneous space. The chapter considers the problem of inserting the source and receiver characteristics into the scattering operator. It calculates the far field in a homogeneous lossless space in terms of plane wave spectrum.

  • Reflection of optimum pulses from the ionosphere

    The reflection of RF pulses having linear frequency variation off an inhomogeneous, anisotropic, dispersive, and absorbing ionospheric layer is considered in this paper. It is found that moderate pulse compression (10 to 20 db) can be achieved by utilizing the intrinsic dispersive properties of this transmission channel. Results are presented which indicate how this compression varies with magnetic dip angle, solar zenith angle, transmitter- receiver separation distance, and propagation direction with respect to a magnetic meridian.



Standards related to Magnetic separation

Back to Top

IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz

Revise and develop specifications for preferred methods for measuring and computing external radiofrequency electromagnetic fields to which persons may be exposed. In addition, the document will specify preferred methods for the measurement and computation of the resulting fields and currents that are induced in bodies of humans exposed to these fields over the frequency range of 100 kHz to 300 ...


Recommended Practice for Measurements and Computation of Electric, Magnetic and Electromagnetic Fields With Respect to Human Exposure to Such Fields, 0 - 100 kHz

This recommended practice describes 1) methods for measuring external electric and magnetic fields and contact currents to which persons may be exposed, 2) instrument characteristics and the methods for calibrating such instruments, and 3) methods for computation and the measurement of the resulting fields and currents that are induced in bodies of humans exposed to these fields. This recommended practice ...



Jobs related to Magnetic separation

Back to Top