Conferences related to Image sampling

Back to Top

2021 IEEE Photovoltaic Specialists Conference (PVSC)

Photovoltaic materials, devices, systems and related science and technology


2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invitedsessions of the latest significant findings and developments in all the major fields of biomedical engineering.Submitted papers will be peer reviewed. Accepted high quality papers will be presented in oral and postersessions, will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE


2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020)

The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2020 will be the 17th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2020 meeting will continue this tradition of fostering cross-fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging.ISBI 2019 will be the 16th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2019 meeting will continue this tradition of fostering cross fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2018 will be the 15th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2018 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2017 will be the 14th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2017 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forumfor the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2016 willbe the thirteenth meeting in this series. The previous meetings have played a leading role in facilitatinginteraction between researchers in medical and biological imaging. The 2016 meeting will continue thistradition of fostering crossfertilization among different imaging communities and contributing to an integrativeapproach to biomedical imaging across all scales of observation.

  • 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2015 will be the 12th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2014 will be the eleventh meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013)

    To serve the biological, biomedical, bioengineering, bioimaging and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2011 IEEE 8th International Symposium on Biomedical Imaging (ISBI 2011)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2010 IEEE 7th International Symposium on Biomedical Imaging (ISBI 2010)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2009 IEEE 6th International Symposium on Biomedical Imaging (ISBI 2009)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2008 IEEE 5th International Symposium on Biomedical Imaging (ISBI 2008)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2007 IEEE 4th International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2007)

  • 2006 IEEE 3rd International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2006)

  • 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2004)

  • 2002 1st IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2002)


2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers.

  • 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premier annual computer vision event comprising the main conference and severalco-located workshops and short courses. With its high quality and low cost, it provides anexceptional value for students, academics and industry researchers.

  • 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers.

  • 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conferenceand 27co-located workshops and short courses. With its high quality and low cost, it provides anexceptional value for students,academics and industry.

  • 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry.

  • 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    computer, vision, pattern, cvpr, machine, learning

  • 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. Main conference plus 50 workshop only attendees and approximately 50 exhibitors and volunteers.

  • 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry.

  • 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Topics of interest include all aspects of computer vision and pattern recognition including motion and tracking,stereo, object recognition, object detection, color detection plus many more

  • 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Sensors Early and Biologically-Biologically-inspired Vision, Color and Texture, Segmentation and Grouping, Computational Photography and Video

  • 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Concerned with all aspects of computer vision and pattern recognition. Issues of interest include pattern, analysis, image, and video libraries, vision and graphics, motion analysis and physics-based vision.

  • 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Concerned with all aspects of computer vision and pattern recognition. Issues of interest include pattern, analysis, image, and video libraries, vision and graphics,motion analysis and physics-based vision.

  • 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2006 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)


2020 IEEE International Conference on Image Processing (ICIP)

The International Conference on Image Processing (ICIP), sponsored by the IEEE SignalProcessing Society, is the premier forum for the presentation of technological advances andresearch results in the fields of theoretical, experimental, and applied image and videoprocessing. ICIP 2020, the 27th in the series that has been held annually since 1994, bringstogether leading engineers and scientists in image and video processing from around the world.


More Conferences

Periodicals related to Image sampling

Back to Top

Antennas and Propagation, IEEE Transactions on

Experimental and theoretical advances in antennas including design and development, and in the propagation of electromagnetic waves including scattering, diffraction and interaction with continuous media; and applications pertinent to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques.


Audio, Speech, and Language Processing, IEEE Transactions on

Speech analysis, synthesis, coding speech recognition, speaker recognition, language modeling, speech production and perception, speech enhancement. In audio, transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. (8) (IEEE Guide for Authors) The scope for the proposed transactions includes SPEECH PROCESSING - Transmission and storage of Speech signals; speech coding; speech enhancement and noise reduction; ...


Automation Science and Engineering, IEEE Transactions on

The IEEE Transactions on Automation Sciences and Engineering (T-ASE) publishes fundamental papers on Automation, emphasizing scientific results that advance efficiency, quality, productivity, and reliability. T-ASE encourages interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, operations research, and other fields. We welcome results relevant to industries such as agriculture, biotechnology, healthcare, home automation, maintenance, manufacturing, pharmaceuticals, retail, ...


Biomedical Circuits and Systems, IEEE Transactions on

The Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems ...


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


More Periodicals

Most published Xplore authors for Image sampling

Back to Top

Xplore Articles related to Image sampling

Back to Top

Optimally isotropic Laplacian operator

IEEE Transactions on Image Processing, 1999

Laplacian operators used in the literature for digital image processing are not rotationally invariant. We examine the anisotropy of 3/spl times/3 Laplacian operators for images quantized in square pixels, and find the operator which has the minimum overall anisotropy.


Holographic acoustic imaging for underwater viewing

1970 IEEE International Conference on Engineering in the Ocean Environment - Digest of Technical Papers, 1970

Ultrasonic holograms of objects as small as 0.25" in diameter have been made in water at 5 feet using 5 MHz. High-resolution images have been constructed from such holograms using optical and computer techniques.


Hexagonal versus orthogonal lattices: a new comparison using approximation theory

IEEE International Conference on Image Processing 2005, 2005

We provide a new comparison between hexagonal and orthogonal lattices, based on approximation theory. For each of the lattices, we select the "natural" spline basis function as generator for a shift-invariant function space; i.e., the tensor-product B-splines for the orthogonal lattice and the non-separable hex-splines for the hexagonal lattice. For a given order of approximation, we compare the asymptotic constants ...


Volumetric partial volume quantification via a statistical model of 3-D voxel gradient magnitude

IEEE Symposium Conference Record Nuclear Science 2004., 2004

3-D volumetric data sets suffer from partial volume (PV) effects due to the finite bandwidth of the digital sampling process. A variety of approaches have been developed to quantify the PV effect in PET, SPECT, NMR and CT imaging modalities. Amongst these, voxel gradient magnitude information, modeled as a Rician distribution, has been suggested as a useful adjunct for statistical ...


Delaunay Mesh Reconstruction from 3D Medical Images Based on Centroidal Voronoi Tessellations

2009 International Conference on Computational Intelligence and Software Engineering, 2009

Reconstructing meshes from 3D medical images is an important but complicated task, which provides a fundamental data structure for bio-medical applications. In this paper, a novel and easily implemental solution is proposed. Instead of following the popular methods, we sample on the medical images with centroidal Voronoi tessellations, and then build the Delaunay mesh from the sampled points directly. By ...


More Xplore Articles

Educational Resources on Image sampling

Back to Top

IEEE-USA E-Books

  • Optimally isotropic Laplacian operator

    Laplacian operators used in the literature for digital image processing are not rotationally invariant. We examine the anisotropy of 3/spl times/3 Laplacian operators for images quantized in square pixels, and find the operator which has the minimum overall anisotropy.

  • Holographic acoustic imaging for underwater viewing

    Ultrasonic holograms of objects as small as 0.25" in diameter have been made in water at 5 feet using 5 MHz. High-resolution images have been constructed from such holograms using optical and computer techniques.

  • Hexagonal versus orthogonal lattices: a new comparison using approximation theory

    We provide a new comparison between hexagonal and orthogonal lattices, based on approximation theory. For each of the lattices, we select the "natural" spline basis function as generator for a shift-invariant function space; i.e., the tensor-product B-splines for the orthogonal lattice and the non-separable hex-splines for the hexagonal lattice. For a given order of approximation, we compare the asymptotic constants of the error kernels, which give a very good indication of the approximation quality. We find that the approximation quality on the hexagonal lattice is consistently better, when choosing lattices with the same sampling density. The area sampling gain related to these asymptotic constants quickly converges when the order of approximation of the basis functions increases. Surprisingly, nearest-neighbor interpolation does not allow to profit from the hexagonal grid. For practical purposes, the second-order hex-spline (i.e., constituted by linear patches) appears as a particularly useful candidate to exploit the advantages of hexagonal lattices when representing images on them.

  • Volumetric partial volume quantification via a statistical model of 3-D voxel gradient magnitude

    3-D volumetric data sets suffer from partial volume (PV) effects due to the finite bandwidth of the digital sampling process. A variety of approaches have been developed to quantify the PV effect in PET, SPECT, NMR and CT imaging modalities. Amongst these, voxel gradient magnitude information, modeled as a Rician distribution, has been suggested as a useful adjunct for statistical PV correction in 2-1) data. However, many biomedical image acquisition processes provide contiguous image slices arising from an acquisition process, which can be approximated to be 3-D in terms of the digital sampling process. Thus, classifiers using models that utilize extra information from the transverse or third perpendicular direction, in this case 3-D gradient magnitude information, should possess superior performance over algorithms that utilize lower dimensional information (e.g. intensity or 2D gradient features). Therefore, analytically derived probability distributions are presented to describe the 3-D gradient magnitude for 3-D isotropic and anisotropic data sets. A Bayesian classification framework, utilizing the 3-D isotropic and anisotropic gradient magnitude expressions, is compared with other models, illustrating superior performance for 3-D volumetric data

  • Delaunay Mesh Reconstruction from 3D Medical Images Based on Centroidal Voronoi Tessellations

    Reconstructing meshes from 3D medical images is an important but complicated task, which provides a fundamental data structure for bio-medical applications. In this paper, a novel and easily implemental solution is proposed. Instead of following the popular methods, we sample on the medical images with centroidal Voronoi tessellations, and then build the Delaunay mesh from the sampled points directly. By applying the algorithm on the CT images and evaluating the mesh quality metrics, the solution presents to be good at reconstructing complicated objects and generates optimized meshes, which shows that it is suitable for anatomical structure modeling.

  • Study Of The Bocage With Satellite Data

    None

  • Design of shapes for precise image registration

    This correspondence deals with the problem of designing planar shapes for subpixel image registration. Basic theoretical considerations are shown to lead to a lower bound on location accuracy. Optimal registration marks achieving this bound are discussed. These optimal designs, however, require very high printing or etching resolution and are inherently very sensitive to variations in the image sampling model (like scaling of grid size and rotation). More robust, optimal and suboptimal "topology-preserving" registration marks are then introduced and analyzed.

  • CT image reconstruction using hexagonal grids

    In the transversal plane CT exhibits a nearly rotational symmetric point spread function. Pixel sampling is typically done on Cartesian grids which are not ideal from a signal processing point of view. It is advantageous to use a hexagonal grid which can capture the same signal components with 13% fewer sampling points. In 3D one can even save 29%. We developed an efficient scheme to allow for arbitrarily shaped field of views and a hierarchical memory layout. The latter divides the images into small hexagonal subimages, similar to honeycombs, whose size is small enough to avoid cache misses on CPU-based algorithms or to be used on dedicated signal processing hardware such as GPUs (graphics processing units) or CBEs (cell broadband engines) that may be memory limited. As the final step a resampling algorithm converts from the hex domain to the Cartesian domain before storing images. We implemented a hyperfast CBE-based Feldkamp algorithm for the hexagonal lattice and compared its performance and its image quality to reconstructions using the standard Feldkamp algorithm. Both algorithms were run on the Dual Cell Based System (DCBS, Mercury Computer Systems, Berlin, Germany) on two CBEs with 3.2 GHz each. A 512<sup>3</sup> volume was reconstructed from 720 projections of 512<sup>2</sup> detector pixels. Image quality of the hexagonal approach was identical to the direct approach using the Cartesian lattice: the maximum relative difference between the MTFs was 1% and image noise differed by not more than 3%. The improvement in reconstruction speed was approximately 12% for the hexagonal grid which is slightly lower than the expectation. The complete reconstruction finished in about 10 s. With identical image quality reconstruction on the hexagonal grid is a simple and effective approach to significantly reduce memory consumption and reconstruction time. Existing reconstruction algorithms can be easily modified to operate in the hexagonal domain.

  • Mapping Potential of Orbview-3 Panchromatic Image in Mountainous Urban Areas: Results of Zonguldak Test-Field

    The objective of this study is to put forth mapping potential of Orbview-3 panchromatic image in Zonguldak test-field. Panchromatic image of Orbview-3 with 1 m GSD (Ground Sampling Distance is selected for the study since OrbView-3 is a new-generation and low-cost high resolution remote sensing satellite). Zonguldak is an important test-field for geometric and semantic analysis of geospatial applications of remote sensing imageries and it is evaluated for DEM (Digital Elevation Model) generation and validation, and information content analysis for topographic mapping. The result of this study is that the information content of OrbView-3 panchromatic imagery is not satisfactory for the generation of 1:5000 scale topographic maps. However, the available information contents are able to support the 1:10000 scale topographic maps production.

  • Spatio-frequency noise distribution a priori for satellite, image joint denoising/deblurring

    We propose a new multiresolution variational joint denoising/deblurring approach, involving a priori assumptions on the solution and knowledge of the imaging systems to account for effects due to acquisition noise (edge preservation, degradation noise modeling, bounded noise assumption and spectral control of noise level-whiteness and stationarity). The techniques used are drawn from a variety of areas of modern signal processing, including optimization theory, inverse problem, wavelet packets decomposition and bounded noise assumption.



Standards related to Image sampling

Back to Top

No standards are currently tagged "Image sampling"


Jobs related to Image sampling

Back to Top