Conferences related to Doppler Radar

Back to Top

2020 IEEE Radar Conference (RadarConf20)

Annual IEEE Radar Conference

  • 2018 IEEE Radar Conference (RadarConf18)

    This conference will be a continuation of the annual IEEE radar series (formerly the IEEE National Radar conference). These conferences cover the many disciplines that span the applications of modern radar systems, including systems-level through subsystem and component technologies, antennas, and signal processing (deterministic and adaptive). The scope includes systems architectures of monostatic, bistatic and multistatic, and ground-based, airborne, shipborne, and spaceborne realizations.

  • 2017 IEEE Radar Conference (RadarCon)

    This conference will be a continuation of the annual IEEE radar series (formerly the IEEE National Radar conference). These conferences cover the many disciplines that span the applications of modern radar systems. This includes systems-level through subsystem and component technologies, antennas, and signal processing (deterministic and adaptive). The scope includes systems architectures of monostatic, bistatic and multistatic, and ground-based, airborne, and spaceborn realizations.

  • 2016 IEEE Radar Conference (RadarCon)

    A continuing series of annual RADAR Conferences IEEE-AESS

  • 2015 IEEE Radar Conference (RadarCon)

    The scope of the IEEE 2015 International Radar Conference includes all aspects of civil and military radar. Topics range from fundamental theory to cutting-edge applications, from signal processing, modeling, simulation to hardware implementation and experimental results.

  • 2014 IEEE Radar Conference (RadarCon)

    The 2014 IEEE Radar Conference will showcase innovations and developments in radar technology. Topics will include presentations describing developments in radar systems and their implementations, phenomenology, target and clutter modeling, signal processing, component advances, etc.

  • 2013 IEEE Radar Conference (RadarCon)

    The conference theme is The Arctic The New Frontier as it presents a vast and challenging environment for which radar systems operating in a multi-sensor environment are currently being developed for deployment on space, air, ship and ground platforms and for both remote sensing of the environment and for the monitoring of human activity. It is one of the major challenges and applications being pursued in the field of radar development in Canada.

  • 2012 IEEE Radar Conference (RadarCon)

    The 2012 IEEE Radar Conference will host 400 to 600 attendees interested in innovations and developments in radar technology. The radar related topics will include presentations describing developments in radar systems and their implementations, phenomenology, target and clutter modeling, component advances, signal processing and data processing utilizing advanced algorithms. The conference will also include exhibits by vendors of radar systems, radar components, instrumentation, related software and publ

  • 2011 IEEE Radar Conference (RadarCon)

    RadarCon11 will feature topics in radar systems, technology, applications, phenomenology,modeling, & signal processing. The conference theme, In the Eye of the Storm, highlights the strong regional interest in radar for severe weather analysis and tracking. Broader implications of the theme reflect global interests such as radar's role in assessing climate change, supporting myriad defense applications, as well as issues with spectrum allocation and management.

  • 2010 IEEE International Radar Conference

    RADAR Systems, RADAR technology

  • 2009 IEEE Radar Conference

    The conference's scope is civil and military radar, including science, technology, and systems. The theme for RADAR '09 is "Radar: From Science to Systems," emphasizing scientific or observational requirements and phenomenology that lead to the systems that we in the radar community develop.

  • 2008 IEEE Radar Conference

    The 2008 IEEE Radar Conference will focus on the key aspects of radar theory and applications as listed below. Exploration of new avenues and methodologies of radar signal processing will also be encouraged. Tutorials will be held in a number of fields of radar technology. The Conference will cover all aspects of radar systems for civil, security and defense applications.

  • 2007 IEEE Radar Conference

  • 2006 IEEE Radar Conference

  • 2005 IEEE International Radar Conference

  • 2004 IEEE Radar Conference

  • 2003 IEEE Radar Conference

  • 2002 IEEE Radar Conference

  • 2001 IEEE Radar Conference

  • 2000 IEEE International Radar Conference

  • 1999 IEEE Radar Conference

  • 1998 IEEE Radar Conference

  • 1997 IEEE Radar Conference

  • 1996 IEEE Radar Conference


Oceans 2020 MTS/IEEE GULF COAST

To promote awareness, understanding, advancement and application of ocean engineering and marine technology. This includes all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.

  • OCEANS 2018 MTS/IEEE Charleston

    Ocean, coastal, and atmospheric science and technology advances and applications

  • OCEANS 2017 - Anchorage

    Papers on ocean technology, exhibits from ocean equipment and service suppliers, student posters and student poster competition, tutorials on ocean technology, workshops and town meetings on policy and governmental process.

  • OCEANS 2016

    The Marine Technology Scociety and the Oceanic Engineering Society of the IEEE cosponor a joint annual conference and exposition on ocean science, engineering, and policy. The OCEANS conference covers four days. One day for tutorials and three for approx. 500 technical papers and 150 -200 exhibits.

  • OCEANS 2015

    The Marine Technology Scociety and the Oceanic Engineering Society of the IEEE cosponor a joint annual conference and exposition on ocean science, engineering, and policy. The OCEANS conference covers four days. One day for tutorials and three for approx. 450 technical papers and 150-200 exhibits.

  • OCEANS 2014

    The OCEANS conference covers four days. One day for tutorials and three for approx. 450 technical papers and 150-200 exhibits.

  • OCEANS 2013

    Three days of 8-10 tracks of technical sessions (400-450 papers) and concurent exhibition (150-250 exhibitors)

  • OCEANS 2012

    Ocean related technology. Tutorials and three days of technical sessions and exhibits. 8-12 parallel technical tracks.

  • OCEANS 2011

    The Marine Technology Society and the Oceanic Engineering Scociety of the IEEE cosponsor a joint annual conference and exposition on ocean science engineering, and policy.

  • OCEANS 2010

    The Marine Technology Society and the Oceanic Engineering Scociety of the IEEE cosponsor a joint annual conference and exposition on ocean science engineering, and policy.

  • OCEANS 2009

  • OCEANS 2008

    The Marine Technology Society (MTS) and the Oceanic Engineering Society (OES) of the Institute of Electrical and Electronic Engineers (IEEE) cosponsor a joint conference and exposition on ocean science, engineering, education, and policy. Held annually in the fall, it has become a focal point for the ocean and marine community to meet, learn, and exhibit products and services. The conference includes technical sessions, workshops, student poster sessions, job fairs, tutorials and a large exhibit.

  • OCEANS 2007

  • OCEANS 2006

  • OCEANS 2005

  • OCEANS 2004

  • OCEANS 2003

  • OCEANS 2002

  • OCEANS 2001

  • OCEANS 2000

  • OCEANS '99

  • OCEANS '98

  • OCEANS '97

  • OCEANS '96


2019 12th German Microwave Conference (GeMiC)

GeMiC 2019 is a scientific conference aiming to bring together academic and industrial researchers from Germany and from abroad, to discuss research progress and prospects in the area of microwave and millimeter-wave theory and techniques.

  • 2018 German Microwave Conference (GeMiC)

    Microwaves, Microwave Systems, Radar, Communications

  • 2016 German Microwave Conference (GeMiC )

    microwaves, microwave systems, radar, communications

  • 2015 German Microwave Conference (GeMiC)

    Microwaves, Microwave Systems, Radar, Communications

  • 2012 German Microwave Conference (GeMiC 2012)

    The conference presents, through its keynote addresses, presentations, workshops, and forums unique opportunities to exchange scientific and technical information and to establish and foster collaboration in microwave and antenna research.

  • 2011 German Microwave Conference (GeMiC 2011)

    -Active/Passive Microwave Devices/Circuits -Metamaterial Structures and Applications -Emerging Technologies -Antennas, Antenna Arrays, and Reconfigurable Antennas -Radar, Imaging, and Localization -RFIDs and Microwave Sensors -Ultrawideband and Microwave Systems -Microwave Measurement Techniques -Electromagnetics, EMC, and Simulation Techniques -Propagation/Channel Modeling -Linear/Nonlinear Modeling

  • 2010 German Microwave Conference (GeMiC 2010)

    Passive Components and Modules, Active Devices and Circuits, RF-MEMS and Tuneable Components, Antennas and Antenna Arrays, Radar, Sensors, and Imaging, Microwave Systems and UWB, Millimetre- and Submillimetre-Waves, Electromagnetics and Numerical Techniques, Propagation and Channel Modeling, EMC, Linear and Nonlinear Modeling, Measurement Techniques

  • 2009 German Microwave Conference (GeMiC 2009)

    passive Circuit componentsm active components, RF-mems, EMC, Measurement techniques, antennas, radar, sensors, imaging, mocrowave systems, education in mocrowave engineering


2019 20th International Radar Symposium (IRS)

The International Radar Symposium aims to provide a forum for both academic and industrial professionals in radar from all over the world and to bring together academicians, researchers, engineers, system analysts, graduate and undergraduate students with government and non-government organizations to share and discuss both theoretical and practical knowledge. We invite everybody to submit outstanding and valuable original research papers and participate in the technical exhibition during the conference.

  • 2018 19th International Radar Symposium (IRS)

    The International Radar Symposium aims to provide a forum for both academic and industrialprofessionals in radar from all over the world and to bring together academicians, researchers,engineers, system analysts, graduate and undergraduate students with government and nongovernmentorganizations to share and discuss both theoretical and practical knowledge. Thescope of the Symposium includes, but is not limited to the following major radar topics: radarsystems, radar applications, emerging technologies, advanced sub-systems, processingtechniques, detection/tracking/classification, radar system simulations.

  • 2017 18th International Radar Symposium (IRS)

    The International Radar Symposium aims to provide a forum for both academic and industrial professionals in radar from all over the world and to bring together academicians, researchers, engineers, system analysts, graduate and undergraduate students with government and non-government organizations to share and discuss both theoretical and practical knowledge. The scope of the Symposium includes, but is not limited to the following major radar topics: radar systems, radar applications, emerging technologies, advanced sub-systems, processing techniques, detection/tracking/classification, radar system simulations.

  • 2016 17th International Radar Symposium (IRS)

    The main goal of the conference is to create forum for radar scientists from all of the world to present their latest research results, new trends in science and technology and exchange ideas.

  • 2015 16th International Radar Symposium (IRS)

    IRS 2015 is a single and unique element in a series of 16 International radar conferences organized so far in Germany and in Poland. The conference series started in Munich in 1998. Due to the rapid development of analog and digital technologies, radar technique is still an expanding technical and economical segment with practical applications in the civilian as well as in the military area. The world-wide family of radar researchers and experts is quite small and it is always a pleasure to meet scientists, engineers, and international experts to discuss new ideas, latest research results and future developments. High-level presentations will allow each participant to get in-depth view on the current status of radar systems and components. IRS 2015 will be held in the beautiful city of Dresden, Germany and opens the door to all radar experts from countries in East Europe.

  • 2014 15th International Radar Symposium (IRS)

    International Radar Symposium (IRS) is a famous annual Conference that is conducted since 1998 normally in different cities of Germany and sometimes in Poland. In 2010 it was held in Lithuania. In 2014 this Conference will be held in Lviv, Ukraine in the framework of the Microwave and Radar Week (MRW-2014) in combination with two other conferences. Radar Systems Advanced Sub-SystemsRadar ApplicationsAirport Surveillance & SafetyPassive, Noise & MIMO RadarsSAR/ISAR/UltrawidebandTracking and Data FusionEmerging TechnologiesProcessing TechniquesComputer ModelingEnvironment Sensing and ModelingSecurity Space Technology & Remote Sensing

  • 2013 14th International Radar Symposium (IRS)

    The symposium will focus on new development in the field of radar systems, signal processing techniques, and radar applications in both civil and military topics.

  • 2012 13th International Radar Symposium (IRS)

    The aim of the International Radar Symposium IRS-2012 is to bring together the worldwide family of radar researchers and experts. We are looking for contributors on the topics relating to radar technologies, systems and advanced sub-systems, processing techniques, as well as radar applications in the civil and the military areas.

  • 2011 12th International Radar Symposium (IRS)

    Due to the rapid development of technologies, radar is still an expanding technical and economical segment with practical applications both in the civil and military areas. The symposium will focus on new development in the field of radar systems, techniques, and applications.

  • 2010 11th International Radar Symposium (IRS)

    Main Topics Radar Systems Advanced Sub-Systems Radar Applications Airport Surveillance & Safety Passive, Noise & MIMO Radars SAR/ISAR/Ultrawideband Tracking and Data Fusion Emerging Technologies Processing Techniques Computer Modeling Environment Sensing and Modeling Security Space Technology & Remote Sensing

  • 2008 International Radar Symposium (IRS)

    The aim of the International Radar Symposium IRS-2008 is to bring together the worldwide family of radar researchers and experts. We are looking for contributors on the topics relating to radar technologies, systems and advanced sub-systems, processing techniques, as well as radar applications in the civil and the military areas.

  • 2006 International Radar Symposium (IRS)


2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops andinvitedsessions of the latest significant findings and developments in all the major fields ofbiomedical engineering.Submitted papers will be peer reviewed. Accepted high quality paperswill be presented in oral and postersessions, will appear in the Conference Proceedings and willbe indexed in PubMed/MEDLINE & IEEE Xplore


More Conferences

Periodicals related to Doppler Radar

Back to Top

Aerospace and Electronic Systems Magazine, IEEE

The IEEE Aerospace and Electronic Systems Magazine publishes articles concerned with the various aspects of systems for space, air, ocean, or ground environments.


Antennas and Propagation, IEEE Transactions on

Experimental and theoretical advances in antennas including design and development, and in the propagation of electromagnetic waves including scattering, diffraction and interaction with continuous media; and applications pertinent to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques.


Antennas and Wireless Propagation Letters, IEEE

IEEE Antennas and Wireless Propagation Letters (AWP Letters) will be devoted to the rapid electronic publication of short manuscripts in the technical areas of Antennas and Wireless Propagation.


Automatic Control, IEEE Transactions on

The theory, design and application of Control Systems. It shall encompass components, and the integration of these components, as are necessary for the construction of such systems. The word `systems' as used herein shall be interpreted to include physical, biological, organizational and other entities and combinations thereof, which can be represented through a mathematical symbolism. The Field of Interest: shall ...


Electromagnetic Compatibility, IEEE Transactions on

EMC standards; measurement technology; undesired sources; cable/grounding; filters/shielding; equipment EMC; systems EMC; antennas and propagation; spectrum utilization; electromagnetic pulses; lightning; radiation hazards; and Walsh functions


More Periodicals

Most published Xplore authors for Doppler Radar

Back to Top

Xplore Articles related to Doppler Radar

Back to Top

Multi-grid Analysis of the Three-Dimensional Doppler Radar Radial Velocity: Idealized Cases Study

2012 Fifth International Joint Conference on Computational Sciences and Optimization, 2012

Through idealized experiments, this study is to test the performance of multi- grid three-dimensional variantional (3D-Var) on three-dimensional (3D) Doppler radar radial velocity data assimilation, and to what degree the 3D Doppler radar radial velocity can improve the conventional (in situ) wind observation analysis. A two-scale idealized wind field is constructed, and then random- distributed conventional wind data and 3D ...


A novel interferometric millimeter wave Doppler radar architecture

2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2013

A universal, mixerless millimeter wave (mmW) Doppler radar architecture consisting of simply a Continuous Wave (CW) source and an intensity detector based on optical interferometry technique has been assembled. The phase information is obtained by using an oscillating mirror in the reference arm, similar to that used by the FTIR (Fourier Transform Infrared spectroscopy) technique. The reference mirror oscillates at ...


Vital signs modeling for Doppler radar cardiorespiratory monitoring

2013 36th International Conference on Telecommunications and Signal Processing (TSP), 2013

Microwave Doppler radar system is utilized to sense breathing and heartbeat of human beings to monitor their vital conditions. The Doppler radar not only receives vital sign signals but also acquires different additive and unwanted waves such as the signal of the extra motion of the body, clutter and electromagnetic noise. Making a mathematical model of received signal by a ...


Noncontact Doppler radar unique identification system using neural network classifier on life signs

2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), 2016

A continuous-wave (CW) Doppler radar-based unique-identification system has been studied. Experiments have been performed using a neural network based classifier to uniquely identify individuals based on the variation in their breathing energy, frequency and patterns captured by the radar. Our work shows the possibility of non-contact unique identification where camera based system is not preferred. It is demonstrated that the ...


Detection of Moving Target and Localization of Clutter Using Doppler Radar on Mobile Platform

IEEE Geoscience and Remote Sensing Letters, 2015

This letter explores the possibilities of detecting a moving target and localizing clutter using nonstationary Doppler radar. The detection of a moving target, particularly a human, has many potential applications in the fields of surveillance and rescue. In dangerous environments, Doppler radar can be used to effectively collect information about the surroundings, even through walls. However, a moving platform makes ...


More Xplore Articles

Educational Resources on Doppler Radar

Back to Top

IEEE.tv Videos

2011 IEEE Dennis J. Picard Medal for Radar Technologies and Applications - James M. Headrick
2014 Dennis J. Picard Medal for Radar Technologies and Applications
Brooklyn 5G 2016: Dr. Klaus Doppler on Virtual Reality - what it takes to be present
Richard Klemm - IEEE Dennis J. Picard Medal for Radar Technologies and Applications, 2019 IEEE Honors Ceremony
Reconfigurable 60-GHz Radar Transmitter SoC - Wooram Lee - RFIC 2019 Showcase
IMS 2011 Microapps - Volume Manufacturing Trends for Automotive Radar Devices
2012 IEEE Honors - Dennis J. Picard Medal for Radar Technologies and Applications
IEEE Dennis J. Picard Medal for Radar Technologies and Applications - Mark E. Davis - 2018 IEEE Honors Ceremony
IMS 2012 Microapps - Virtual Flight Testing of Radar System Performance Daren McClearnon, Agilent EEsof
Nadav Levanon receives the IEEE Dennis J. Picard Medal for Radar Technologies and Applications - Honors Ceremony 2016
Brooklyn 5G 2016: Panel on eHealth and Virtual Reality
Hugh Griffiths accepts the IEEE Dennis J. Picard Medal for Radar Technologies and Applications - Honors Ceremony 2017
IMS 2012 Special Sessions: The Evolution of Some Key Active and Passive Microwave Components - N. J. Kolias
2013 IEEE Dennis J. Picard Medal
MicroApps: Radar Design Flow with NI-AWR Integrated Framework (National Instruments)
CMOS mmWave Radar SoC Architecture and Applications - Sreekiran Samala - RFIC Showcase 2018
Green Radar State of Art: theory, practice and way ahead.
2015 IEEE Honors: IEEE Dennis J. Picard Medal for Radar Technologies and Applications - Marshall Greenspan
MicroApps: Simulation of Airborne, Space-Borne and Ship-Based Radar Systems with Complex Environment (Agilent EEsof)
Young Professionals at N3XT: Bringing Together Tech Fields

IEEE-USA E-Books

  • Multi-grid Analysis of the Three-Dimensional Doppler Radar Radial Velocity: Idealized Cases Study

    Through idealized experiments, this study is to test the performance of multi- grid three-dimensional variantional (3D-Var) on three-dimensional (3D) Doppler radar radial velocity data assimilation, and to what degree the 3D Doppler radar radial velocity can improve the conventional (in situ) wind observation analysis. A two-scale idealized wind field is constructed, and then random- distributed conventional wind data and 3D Doppler radar radial velocity data are generated based on this idealized wind field. By assimilating these data and comparing the analyses with the true idealized circulation field, the multi-grid 3D-Var performance in 3D Doppler radar radial velocity analysis is evaluated. The effects of weak constraint and strong constraint on the multi- grid 3D-Var analyses are also presented. Results show that the 3D Doppler radar radial velocity data do provide additional useful information especially in the sparse distributed conventional observation situation, and the multi- grid 3D-Var with strong constraint can make better analyses on not only horizontal but also vertical velocity.

  • A novel interferometric millimeter wave Doppler radar architecture

    A universal, mixerless millimeter wave (mmW) Doppler radar architecture consisting of simply a Continuous Wave (CW) source and an intensity detector based on optical interferometry technique has been assembled. The phase information is obtained by using an oscillating mirror in the reference arm, similar to that used by the FTIR (Fourier Transform Infrared spectroscopy) technique. The reference mirror oscillates at a frequency that is higher than twice the Doppler frequency of the object. Rigorous mathematical formulas have been derived to solve for both the amplitude and the phase of the Doppler signal, by using the Low-Frequency-Band (LFB) and High-Frequency-Band (HFB) signals. The Doppler frequency signature of a moving object can be obtained from the Fourier transform of the phase. A prototype at 94 GHz was built and tested using a ball pendulum target moving over a full-swing distance much smaller than a wavelength. Both the measured amplitude and phase have been shown to agree well with the experimental parameters. The interferometric Doppler radar architecture is universal and can be extended to THz without significant change of components.

  • Vital signs modeling for Doppler radar cardiorespiratory monitoring

    Microwave Doppler radar system is utilized to sense breathing and heartbeat of human beings to monitor their vital conditions. The Doppler radar not only receives vital sign signals but also acquires different additive and unwanted waves such as the signal of the extra motion of the body, clutter and electromagnetic noise. Making a mathematical model of received signal by a Doppler radar will be helpful to analyze vital conditions. In this paper we simulated the signal received by a Doppler radar system, and the results were compared with the vital signals obtained from a human by both a custom designed 24 GHz radar and a commercial respiratory transducer attached around the chest; in both time and frequency domains.

  • Noncontact Doppler radar unique identification system using neural network classifier on life signs

    A continuous-wave (CW) Doppler radar-based unique-identification system has been studied. Experiments have been performed using a neural network based classifier to uniquely identify individuals based on the variation in their breathing energy, frequency and patterns captured by the radar. Our work shows the possibility of non-contact unique identification where camera based system is not preferred. It is demonstrated that the system is capable of identifying individuals with more than 90% accuracy. This study also has impact on radar- based breathing pattern classification for health diagnostics.

  • Detection of Moving Target and Localization of Clutter Using Doppler Radar on Mobile Platform

    This letter explores the possibilities of detecting a moving target and localizing clutter using nonstationary Doppler radar. The detection of a moving target, particularly a human, has many potential applications in the fields of surveillance and rescue. In dangerous environments, Doppler radar can be used to effectively collect information about the surroundings, even through walls. However, a moving platform makes the detection of a moving target complicated due to Doppler shift caused by the clutter. We analyze the pattern of the Doppler shift due to clutter over time and develop a linear regression model that describes this pattern. The location of clutter can be estimated by the model with the time history of the measured Doppler shifts. Although the pattern from clutter follows the mathematical model, the pattern from a moving target does not, resulting in a high-percentage root-mean-square (RMS) fitting error. On the basis of the percentage RMS fitting error, a moving target is differentiated from clutter.

  • Sub-μW signal power doppler radar heart rate detection

    Periodic motion, such as that resulting from cardiopulmonary activity, can be measured by direct-conversion microwave Doppler radar. In such systems, motion is measured as phase modulation and measurement sensitivity is significantly affected by phase noise and amplitude modulation sidebands in the local oscillator. Presented here are experimental results of heart rate measurements under various signal output power conditions, with consideration for the impact of respiration. Measurements were made using a custom compact quadrature direct conversion Doppler radar circuit, and results indicate that heart rate can be accurately assessed with transmit power for levels as low as 20nW for a subject distance of one meter. This is the lowest power ever reported for ISM band CW doppler radar heart beat detection.

  • A 60-GHz CMOS direct-conversion Doppler radar RF sensor with clutter canceller for single-antenna noncontact human vital-signs detection

    This paper presents a 60-GHz CMOS direct-conversion Doppler radar RF sensor with a quasi-circulator (QC) and a clutter canceller circuit for single- antenna noncontact human vital-signs detection. A high isolation QC is designed to provide better detection sensitivity for the tiny vital-signs detection for the single-antenna Doppler radar architecture. The clutter canceller performs cancellation for the transmitting leakage power from the circulator and the background reflection clutter to enhance the detection sensitivity of weak vital signals. The measurement shows that the total transmitting power is 3 dBm while the conversion gain of the sub-harmonic receiver is 10.5 dB. In the human vital-signs detection measurement, at a distance of 75 cm, the detected heartbeat (1-1.3 Hz) and respiratory (0.35-0.45 Hz) signals can be clearly observed. The RF sensor is fabricated in 90-nm technology with a chip size of 2 mm × 2 mm and a consuming power of 217 mW. The presented CMOS vital-signs Doppler radar RF sensor will be very useful for the wireless remote physiological monitoring healthcare system and the tiny vibrations detection applications.

  • AC/DC coupling effects on CW and pulse transmission modes in Doppler radar physiological monitoring system

    Direct-conversion CW microwave Doppler radar can be used to wirelessly detect cardiopulmonary activity. One of the limitations of homodyne CW Doppler radar systems for physiological monitoring is large DC offset in baseband outputs. The common method to avoid the DC offset is AC coupling. While AC coupling removes the DC offset efficiently, it introduces large settling time and signal distortion in baseband. In this paper we explore the use of direction conversion pulsed Doppler radar to overcome this issue. Performance of CWand pulse radar is compared using mechanical target movement which simulates respiratory motion. The results demonstrate while AC coupling distorts CW radar output, it has a negligible effect on pulse radar output.

  • Amplitude modulation issues in Doppler radar heart signal extraction

    Medical Doppler radar research has largely been limited to obtaining respiratory and heart rates. While this information is vital for many applications, medical Doppler radar signatures carry significant other information that could lead to cardiopulmonary volume assessments, including cardiac stroke volume (SV), and cardiac output (CO). Accurate recovery of heart signal amplitude is required for these assessments. This paper presents the first analysis of amplitude modulation artifacts on heart signal recovery in Doppler radar systems. The sources of amplitude modulation artifacts are identified, including limitations of linear demodulation, and inherent affects of respiratory signal harmonics on heart signals. Experimental and simulation results demonstrate the validity of this analysis, and outline the path towards successful heart signal amplitude recovery.

  • A Demonstrator for the Doppler Radar Cloud Profiler (DRCP)

    Millimetre wave radar, preferrably with Doppler capability, is applied in atmospheric remote sensing since decades. The first systems were based on vacuum tube technology and used the pulsed Doppler operation mode. Due to the high manufacturing and operation costs, there was no reasonable path foreseen to routine operational application, e.g. in networks of national weather services, to date. In the mid-1990s the first millimetre-wave radar profilers for atmospheric research based on solid-state devices were developed. They used the FMCW Doppler operation mode. Due to their complex RF design these systems were not suitable for operational operation, either. Recent progress in the performance and availability of Ka-band solid state components encouraged S&AO Ltd to develop an RF design for a Ka-band FMCW Doppler Radar Cloud Profiler (DRCP) for future operational application. This RF design is presented here. A demonstrator for the DRCP has been realised during a Proof of Concept project. The DRCP demonstrator performance was assessed by inter- comparison with an established cloud radar. The result of this performance assessment is described, and eventually conclusions are presented.



Standards related to Doppler Radar

Back to Top

IEEE Standard for Ultrawideband Radar Definitions

This document organizes and standardizes the terms and definitions used in the field of ultrawideband (UWB) radar.


IEEE Standard for Ultrawideband Radar Definitions - Corrigendum 1

This document organizes and standardizes the terms and definitions used in the field of ultrawideband(UWB) radar.


IEEE Standard Letter Designations for Radar-Frequency Bands

Radar systems operate in frequency bands that since World War II have been identified by letter designations. To recognize and preserve accepted usage, the proposed revision would re-affirm the letter designations for radar, revising the current standard to update it regarding current International Telecommunication Union (ITU) radar band allocations and comments. No change in scope from the current standard is ...


IEEE Standard Radar Definitions

This standard is devoted to providing radar definitions. The standard includes terms formerly found in IEEE Std 172-1971, with the exception of a few terms that are common in both fields, and new and updated terms. IEEE Std 172-1983 was withdrawn in 1983. As radar technology and literature evolve, new terms will be added and obsolete terms deleted.



Jobs related to Doppler Radar

Back to Top