Conferences related to Embryonic structures

Back to Top

2021 IEEE Pulsed Power Conference (PPC)

The Pulsed Power Conference is held on a biannual basis and serves as the principal forum forthe exchange of information on pulsed power technology and engineering.


2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invitedsessions of the latest significant findings and developments in all the major fields of biomedical engineering.Submitted papers will be peer reviewed. Accepted high quality papers will be presented in oral and postersessions, will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE


2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020)

The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2020 will be the 17th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2020 meeting will continue this tradition of fostering cross-fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging.ISBI 2019 will be the 16th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2019 meeting will continue this tradition of fostering cross fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2018 will be the 15th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2018 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2017 will be the 14th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2017 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forumfor the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2016 willbe the thirteenth meeting in this series. The previous meetings have played a leading role in facilitatinginteraction between researchers in medical and biological imaging. The 2016 meeting will continue thistradition of fostering crossfertilization among different imaging communities and contributing to an integrativeapproach to biomedical imaging across all scales of observation.

  • 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2015 will be the 12th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2014 will be the eleventh meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013)

    To serve the biological, biomedical, bioengineering, bioimaging and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2011 IEEE 8th International Symposium on Biomedical Imaging (ISBI 2011)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2010 IEEE 7th International Symposium on Biomedical Imaging (ISBI 2010)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2009 IEEE 6th International Symposium on Biomedical Imaging (ISBI 2009)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2008 IEEE 5th International Symposium on Biomedical Imaging (ISBI 2008)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2007 IEEE 4th International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2007)

  • 2006 IEEE 3rd International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2006)

  • 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2004)

  • 2002 1st IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2002)


2020 IEEE 18th International Conference on Industrial Informatics (INDIN)

INDIN focuses on recent developments, deployments, technology trends, and research results in Industrial Informatics-related fields from both industry and academia


2020 IEEE International Power Modulator and High Voltage Conference (IPMHVC)

This conference provides an exchange of technical topics in the fields of Solid State Modulators and Switches, Breakdown and Insulation, Compact Pulsed Power Systems, High Voltage Design, High Power Microwaves, Biological Applications, Analytical Methods and Modeling, and Accelerators.


More Conferences

Periodicals related to Embryonic structures

Back to Top

Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Design & Test of Computers, IEEE

IEEE Design & Test of Computers offers original works describing the methods used to design and test electronic product hardware and supportive software. The magazine focuses on current and near-future practice, and includes tutorials, how-to articles, and real-world case studies. Topics include IC/module design, low-power design, electronic design automation, design/test verification, practical technology, and standards. IEEE Design & Test of ...


Engineering in Medicine and Biology Magazine, IEEE

Both general and technical articles on current technologies and methods used in biomedical and clinical engineering; societal implications of medical technologies; current news items; book reviews; patent descriptions; and correspondence. Special interest departments, students, law, clinical engineering, ethics, new products, society news, historical features and government.


Image Processing, IEEE Transactions on

Signal-processing aspects of image processing, imaging systems, and image scanning, display, and printing. Includes theory, algorithms, and architectures for image coding, filtering, enhancement, restoration, segmentation, and motion estimation; image formation in tomography, radar, sonar, geophysics, astronomy, microscopy, and crystallography; image scanning, digital half-toning and display, andcolor reproduction.


Magnetics, IEEE Transactions on

Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The Transactions publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.


More Periodicals

Most published Xplore authors for Embryonic structures

Back to Top

Xplore Articles related to Embryonic structures

Back to Top

Self-organizing and fault-tolerant behaviors approach in bio-inspired hardware redundant network structures

2010 IEEE 14th International Conference on Intelligent Engineering Systems, 2010

It's well-known, biological organisms offer the ability to grow with fault- tolerance and self-organization behaviors. By adapting basic properties and capabilities from nature, scientific approaches have helped researches understand related phenomena and associated with principles to engine complex novel digital systems and improve their capability. Founded by these observations, the paper is focused on modeling and simulation artificial embryonic structures, ...


Nonuniform temporal alignment of slice sequences for four-dimensional imaging of cyclically deforming embryonic structures

3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006., 2006

The temporal alignment of nongated slice-sequences acquired at different axial positions in the living embryonic zebrafish heart permits the reconstruction of dynamic, three-dimensional data. This approach overcomes the current acquisition-speed limitation of confocal microscopes for real-time three- dimensional imaging of fast processes. Current synchronization methods align and uniformly scale the data in time, but do not compensate for slight variations ...


Self-healing and artificial immune properties implementation upon FPGA-based embryonic network

2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 2010

It is well-known, biological organisms offers the ability to grow with fault- tolerance and self-repair behaviors. By adapting basic properties and capabilities from nature, scientific approaches have helped researches understand related phenomena and associated with principles to engine complex novel digital systems and improve their capability. Founded by these observations, the paper is focused on modeling and simulation artificial embryonic ...


Force Sensing and Manipulation Strategy in Robot-Assisted Microinjection on Zebrafish Embryos

IEEE/ASME Transactions on Mechatronics, 2011

Robot-assisted microinjection has attracted considerable attention from both engineering and biological communities, due to its advantages of high precision and throughput. This paper addresses two issues in the development of enable technologies for robot-assisted microinjection. One is the microforce measurement during the embryo-injection process. A new injection force-sensing scheme based on a simply supported beam structure is reported. The model ...


Development of hardware redundant embryonic structure for high reliability control applications

2010 12th International Conference on Optimization of Electrical and Electronic Equipment, 2010

As it is known, the immune system found in biological organisms is robust and able to identify a large scale of diseases, infectious pathogens, or other harmful effects. Built on a huge cell-based structure in a well organized hierarchical mechanism, this system expresses remarkable self-healing, surviving and evolution abilities. The basic idea of the paper is to take inspiration of ...



Educational Resources on Embryonic structures

Back to Top

IEEE-USA E-Books

  • Self-organizing and fault-tolerant behaviors approach in bio-inspired hardware redundant network structures

    It's well-known, biological organisms offer the ability to grow with fault- tolerance and self-organization behaviors. By adapting basic properties and capabilities from nature, scientific approaches have helped researches understand related phenomena and associated with principles to engine complex novel digital systems and improve their capability. Founded by these observations, the paper is focused on modeling and simulation artificial embryonic structures, with the purpose to develop VLSI hardware architectures able to imitate cells or organism operation mode, with similar robustness like their biological equivalents from nature. Self-healing algorithms and artificial immune properties implementation is investigated and experimented on the developed models. The presented theoretical and simulation approaches were tested on a FPGA-based embryonic network architecture (embryonic machine), built with the purpose to implement on silicon fault-tolerant and surviving properties of living organisms.

  • Nonuniform temporal alignment of slice sequences for four-dimensional imaging of cyclically deforming embryonic structures

    The temporal alignment of nongated slice-sequences acquired at different axial positions in the living embryonic zebrafish heart permits the reconstruction of dynamic, three-dimensional data. This approach overcomes the current acquisition-speed limitation of confocal microscopes for real-time three- dimensional imaging of fast processes. Current synchronization methods align and uniformly scale the data in time, but do not compensate for slight variations in the heart rhythm that occur within a heartbeat. Therefore, they impose constraints on the admissible data quality. Here, we derive a nonuniform registration procedure based on the minimization of the absolute value of the intensity difference between adjacent slice-sequence pairs. The method compensates for temporal intra-sample variations and allows the processing of a wider range of data to build functional, dynamic models of the beating embryonic heart. We show reconstructions from data acquired in living, fluorescent zebrafish embryos

  • Self-healing and artificial immune properties implementation upon FPGA-based embryonic network

    It is well-known, biological organisms offers the ability to grow with fault- tolerance and self-repair behaviors. By adapting basic properties and capabilities from nature, scientific approaches have helped researches understand related phenomena and associated with principles to engine complex novel digital systems and improve their capability. Founded by these observations, the paper is focused on modeling and simulation artificial embryonic structures, with the purpose to develop VLSI hardware architectures able to imitate cells or organism operation mode, with similar robustness like their biological equivalents from nature. Self-healing algorithms and artificial immune properties implementation is investigated and experimented on the developed models. The presented theoretical and simulation approaches were tested on a FPGA-based embryonic network architecture (embryonic machine), built with the purpose to implement on silicon fault-tolerant and surviving properties of living organisms.

  • Force Sensing and Manipulation Strategy in Robot-Assisted Microinjection on Zebrafish Embryos

    Robot-assisted microinjection has attracted considerable attention from both engineering and biological communities, due to its advantages of high precision and throughput. This paper addresses two issues in the development of enable technologies for robot-assisted microinjection. One is the microforce measurement during the embryo-injection process. A new injection force-sensing scheme based on a simply supported beam structure is reported. The model combining mechanoelectrical transduction of the beam and the polyvinylidene fluoride sensing material is theoretically investigated. The other issue to be addressed is the manipulation strategy to mimic human- injection operation, which is based on force sensing and control techniques. A set of microinjection experiments on zebrafish embryos is performed to demonstrate the effectiveness of the proposed robot-assisted manipulation methodology. Experimental results show that satisfied survival rate of the injected cells can be obtained, which is comparable to manual operation by human expert.

  • Development of hardware redundant embryonic structure for high reliability control applications

    As it is known, the immune system found in biological organisms is robust and able to identify a large scale of diseases, infectious pathogens, or other harmful effects. Built on a huge cell-based structure in a well organized hierarchical mechanism, this system expresses remarkable self-healing, surviving and evolution abilities. The basic idea of the paper is to take inspiration of these mechanisms and associate with principles to engine complex VLSI digital systems for high reliability control applications. For this reason, an embryonic structure was developed and modeled, which expresses similar fault-tolerance and robustness properties like their equivalents from the biological world. Computer simulations prove that these remarkable capabilities would be more advantageous in many applications where robustness and high reliability requirements are imposed. The theoretical approaches and developed models were acquired in hardware redundant embryonic structure, built on a FPGA-based artificial cell network topology. Laboratory experiments show that the implemented embryonic machine is very suitable for a large scale of high security industrial control applications.



Standards related to Embryonic structures

Back to Top

No standards are currently tagged "Embryonic structures"


Jobs related to Embryonic structures

Back to Top