Conferences related to Computed tomography

Back to Top

2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invitedsessions of the latest significant findings and developments in all the major fields of biomedical engineering.Submitted papers will be peer reviewed. Accepted high quality papers will be presented in oral and postersessions, will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE


2020 IEEE International Conference on Image Processing (ICIP)

The International Conference on Image Processing (ICIP), sponsored by the IEEE SignalProcessing Society, is the premier forum for the presentation of technological advances andresearch results in the fields of theoretical, experimental, and applied image and videoprocessing. ICIP 2020, the 27th in the series that has been held annually since 1994, bringstogether leading engineers and scientists in image and video processing from around the world.


2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)

All areas of ionizing radiation detection - detectors, signal processing, analysis of results, PET development, PET results, medical imaging using ionizing radiation


2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020)

The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2020 will be the 17th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2020 meeting will continue this tradition of fostering cross-fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2002 1st IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2002)

  • 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2004)

  • 2006 IEEE 3rd International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2006)

  • 2007 IEEE 4th International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2007)

  • 2008 IEEE 5th International Symposium on Biomedical Imaging (ISBI 2008)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2009 IEEE 6th International Symposium on Biomedical Imaging (ISBI 2009)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2010 IEEE 7th International Symposium on Biomedical Imaging (ISBI 2010)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2011 IEEE 8th International Symposium on Biomedical Imaging (ISBI 2011)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013)

    To serve the biological, biomedical, bioengineering, bioimaging and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2014 will be the eleventh meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2015 will be the 12th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forumfor the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2016 willbe the thirteenth meeting in this series. The previous meetings have played a leading role in facilitatinginteraction between researchers in medical and biological imaging. The 2016 meeting will continue thistradition of fostering crossfertilization among different imaging communities and contributing to an integrativeapproach to biomedical imaging across all scales of observation.

  • 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2017 will be the 14th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2017 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2018 will be the 15th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2018 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging.ISBI 2019 will be the 16th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2019 meeting will continue this tradition of fostering cross fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.


2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)

The scope of the 2020 IEEE/ASME AIM includes the following topics: Actuators, Automotive Systems, Bioengineering, Data Storage Systems, Electronic Packaging, Fault Diagnosis, Human-Machine Interfaces, Industry Applications, Information Technology, Intelligent Systems, Machine Vision, Manufacturing, Micro-Electro-Mechanical Systems, Micro/Nano Technology, Modeling and Design, System Identification and Adaptive Control, Motion Control, Vibration and Noise Control, Neural and Fuzzy Control, Opto-Electronic Systems, Optomechatronics, Prototyping, Real-Time and Hardware-in-the-Loop Simulation, Robotics, Sensors, System Integration, Transportation Systems, Smart Materials and Structures, Energy Harvesting and other frontier fields.



Periodicals related to Computed tomography

Back to Top

Aerospace and Electronic Systems Magazine, IEEE

The IEEE Aerospace and Electronic Systems Magazine publishes articles concerned with the various aspects of systems for space, air, ocean, or ground environments.


Antennas and Propagation, IEEE Transactions on

Experimental and theoretical advances in antennas including design and development, and in the propagation of electromagnetic waves including scattering, diffraction and interaction with continuous media; and applications pertinent to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques.


Automatic Control, IEEE Transactions on

The theory, design and application of Control Systems. It shall encompass components, and the integration of these components, as are necessary for the construction of such systems. The word `systems' as used herein shall be interpreted to include physical, biological, organizational and other entities and combinations thereof, which can be represented through a mathematical symbolism. The Field of Interest: shall ...


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Computer

Computer, the flagship publication of the IEEE Computer Society, publishes peer-reviewed technical content that covers all aspects of computer science, computer engineering, technology, and applications. Computer is a resource that practitioners, researchers, and managers can rely on to provide timely information about current research developments, trends, best practices, and changes in the profession.



Most published Xplore authors for Computed tomography

Back to Top

Xplore Articles related to Computed tomography

Back to Top

Comparison between cross-correlation and optical flow methods for patient motion detection in SPECT

Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society, 1995

An automatic procedure for the detection and quantification of motion during single photon emission computerized tomography (SPECT) is proposed. The method computes the optical flow vector field between two successive views. The proposed method is also compared with the cross-correlation method.


Reconstruction of attenuation map using discrete consistency conditions

IEEE Transactions on Medical Imaging, 2000

Methods of quantitative emission computed tomography require compensation for linear photon attenuation. A current trend in single-photon emission computed tomography (SPECT) and positron emission tomography (PET) is to employ transmission scanning to reconstruct the attenuation map. Such an approach, however, considerably complicates both the scanner design and the data acquisition protocol. A dramatic simplification could be made if the attenuation ...


Attenuation and detector response compensations used with Gibbs prior distributions for maximum a posteriori SPECT reconstruction

Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference, 1991

The relationship between the choice of parameters for a generalized Gibbs prior for the MAP-EM (maximum a posteriori, expectation maximization) algorithm and the model of the projection/backprojection process used in SPECT (single photon emission computed tomography) reconstruction is studied. A realistic phantom, derived from an X-ray CT study and average Tl-201 uptake distributions in patients, was used. Simulated projection data, ...


A computer simulation of simultaneous emission-transmission CT

1990 IEEE Nuclear Science Symposium Conference Record, 1990

None


Three-dimensional blind deconvolution of SPECT images

IEEE Transactions on Biomedical Engineering, 2000

Thanks to its ability to yield functionally rather than anatomically-based information, the three-dimensional (3-D) SPECT imagery technique has become a great help in the diagnostics of cerebrovascular diseases. Nevertheless, due to the imaging process, the 3-D single photon emission computed tomography (SPECT) images are very blurred and, consequently, their interpretation by the clinician is often difficult and subjective. In order ...



Educational Resources on Computed tomography

Back to Top

IEEE-USA E-Books

  • Comparison between cross-correlation and optical flow methods for patient motion detection in SPECT

    An automatic procedure for the detection and quantification of motion during single photon emission computerized tomography (SPECT) is proposed. The method computes the optical flow vector field between two successive views. The proposed method is also compared with the cross-correlation method.

  • Reconstruction of attenuation map using discrete consistency conditions

    Methods of quantitative emission computed tomography require compensation for linear photon attenuation. A current trend in single-photon emission computed tomography (SPECT) and positron emission tomography (PET) is to employ transmission scanning to reconstruct the attenuation map. Such an approach, however, considerably complicates both the scanner design and the data acquisition protocol. A dramatic simplification could be made if the attenuation map could be obtained directly from the emission projections, without the use of a transmission scan. This can be done by applying the consistency conditions that enable one to identify the operator of the problem and, thus, to reconstruct the attenuation map. Here, the authors propose a new approach based on the discrete consistency conditions. One of the main advantages of the suggested method over previously used continuous conditions is that it can easily be applied in various scanning configurations, including fully three-dimensional (3-D) data acquisition protocols. Also, it provides a stable numerical implementation, allowing one to avoid the crosstalk between the attenuation map and the source function. A computationally efficient algorithm is implemented by using the QR and Cholesky decompositions. Application of the algorithm to computer-generated and experimentally measured SPECT data is considered.

  • Attenuation and detector response compensations used with Gibbs prior distributions for maximum a posteriori SPECT reconstruction

    The relationship between the choice of parameters for a generalized Gibbs prior for the MAP-EM (maximum a posteriori, expectation maximization) algorithm and the model of the projection/backprojection process used in SPECT (single photon emission computed tomography) reconstruction is studied. A realistic phantom, derived from an X-ray CT study and average Tl-201 uptake distributions in patients, was used. Simulated projection data, including nonuniform attenuation, detector response, scatter, and Poisson noise, were generated. From this data set, reconstructions were created using a MAP-EM technique with a generalized Gibbs prior, which is designed to smooth noise with minimal smoothing of edge information. Reconstructions were performed over several different values of the prior parameters for three projector/backprojector models: one with no compensations at all, one incorporating only nonuniform attenuation compensation, and one incorporating both nonuniform attenuation and detector response compensations. Analysis of several measures of image quality in a region of interest surrounding the myocardium shows that, for each projection model, there is an optimal value of the weighting parameter which decreases as the projection process is modeled more accurately.<<ETX>>

  • A computer simulation of simultaneous emission-transmission CT

    None

  • Three-dimensional blind deconvolution of SPECT images

    Thanks to its ability to yield functionally rather than anatomically-based information, the three-dimensional (3-D) SPECT imagery technique has become a great help in the diagnostics of cerebrovascular diseases. Nevertheless, due to the imaging process, the 3-D single photon emission computed tomography (SPECT) images are very blurred and, consequently, their interpretation by the clinician is often difficult and subjective. In order to improve the resolution of these 3-D images and then to facilitate their interpretation, the authors propose herein to extend a recent image blind deconvolution technique (called the nonnegativity support constraint-recursive inverse filtering deconvolution method) in order to improve both the spatial and the interslice resolution of SPECT volumes. This technique requires a preliminary step in order to find the support of the object to be restored. Here, the authors propose to solve this problem with an unsupervised 3-D Markovian segmentation technique. This method has been successfully tested on numerous real and simulated brain SPECT volumes, yielding very promising restoration results.

  • Effect of increased axial field of view on the performance of a volume PET scanner

    The performance of the PENN-PET (positron emission tomography) 240H scanner from UGM Medical Systems is tested and compared to the prototype PENN-PET scanner built at the University of Pennsylvania. The UGM PENN-PET scanner consists of six continuous position-sensitive NaI(Tl) detectors, which results in a 50-cm transverse field-of-view and a 12.8-cm axial field-of-view. The fine spatial sampling in the axial direction allows the data to be sorted into as many as 64 transverse planes, each 2-mm thick. A large axial acceptance angle, without interplane septa, results in a high sensitivity, with a low scatter and random fraction, due to the use of a narrow photopeak energy window. Emphasis is placed on those performance measurements that illustrate the special characteristics of a volume imaging scanner and how they change as the axial length is increased.<<ETX>>

  • Practical iterative reconstruction methods for quantitative cardiac SPECT image reconstruction

    Summary form only given. The authors investigate the practical implementation of iterative reconstruction methods to improve the quality and quantitative accuracy of cardiac single photon emission computed tomography (SPECT) images over the filtered backpropagation (FB) algorithm. A cardiac-chest phantom based on a patient CT scan and Tl-201 uptake data was used in the study. Projection data were generated which included the effects of nonuniform attenuation detector response, scatter and noise. Use was made of the iterative Chang algorithm with nonuniform attenuation compensation only, the iterative maximum likelihood-expectation maximization (ML-EM) and WLS-CG methods, and variations of the WLS-CG methods, including the use of the FB or Chang reconstructed image as initial estimate and filtering to suppress noise amplifications at high iteration number. The mean-square-error over the region of the heart and the normalized standard deviation over a background region were used to evaluate the different reconstruction methods. It was found that, using the Chang reconstructed image as the initial estimate in the WLS-CG method together with filtering between iterations, cardiac SPECT images with good quality and quantitative accuracy can be obtained in a few iterations.<<ETX>>

  • A Jini service to reconstruct tomographic data

    Distributed computing that uses dynamic networks will change the way one works and communicates thanks to the interaction of devices and services, that are automatically added and removed from the network as needed. The Jini technology, which is built atop the Java programming language, provides a homogenous view of the network and extends the ability of code to migrate in Java. This software design model simplifies the configuration and access to hardware devices and software services in a network. Thus, it becomes possible to execute new services without pre-installing software on client machines. This new programming paradigm is especially important in medical applications, where the reliable transmission of information is essential. This paper demonstrates how single photon emission computerized tomography data ran be iteratively reconstructed using a Jini service.

  • Multimodality image registration by maximization of mutual information

    A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or information redundancy between the image intensities of corresponding voxels in both images, which is assumed to be maximal if the images are geometrically aligned. Maximization of MI is a very general and powerful criterion, because no assumptions are made regarding the nature of this dependence and no limiting constraints are imposed on the image content of the modalities involved. The accuracy of the MI criterion is validated for rigid body registration of computed tomography (CT), magnetic resonance (MR), and photon emission tomography (PET) images by comparison with the stereotactic registration solution, while robustness is evaluated with respect to implementation issues, such as interpolation and optimization, and image content, including partial overlap and image degradation. Our results demonstrate that subvoxel accuracy with respect to the stereotactic reference solution can be achieved completely automatically and without any prior segmentation, feature extraction, or other preprocessing steps which makes this method very well suited for clinical applications.

  • The weighted-distance scheme: a globally optimizing projection ordering method for ART

    The order in which the projections are applied in the algebraic reconstruction technique (ART) has a great effect on speed of convergence, accuracy, and the amount of noise-like artifacts in the reconstructed image. In this paper, a new projection ordering scheme for ART is presented: the weighted-distance scheme (WDS). It heuristically optimizes the angular distance of a newly selected projection with respect to an extended sequence of previously applied projections. This sequence of influential projections may incorporate the complete set of all previously applied projections or any limited time interval subset thereof. The selection algorithm results in uniform sampling of the projection access space, minimizing correlation in the projection sequence. This produces more accurate images with less noise-like artifacts than previously suggested projection ordering schemes.



Standards related to Computed tomography

Back to Top

No standards are currently tagged "Computed tomography"