Conferences related to Classification tree analysis

Back to Top

2023 Annual International Conference of the IEEE Engineering in Medicine & Biology Conference (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invitedsessions of the latest significant findings and developments in all the major fields of biomedical engineering.Submitted full papers will be peer reviewed. Accepted high quality papers will be presented in oral and poster sessions,will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE.


2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020)

The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2020 will be the 17th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2020 meeting will continue this tradition of fostering cross-fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging.ISBI 2019 will be the 16th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2019 meeting will continue this tradition of fostering cross fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2018 will be the 15th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2018 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2017 will be the 14th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2017 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forumfor the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2016 willbe the thirteenth meeting in this series. The previous meetings have played a leading role in facilitatinginteraction between researchers in medical and biological imaging. The 2016 meeting will continue thistradition of fostering crossfertilization among different imaging communities and contributing to an integrativeapproach to biomedical imaging across all scales of observation.

  • 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2015 will be the 12th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2014 will be the eleventh meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013)

    To serve the biological, biomedical, bioengineering, bioimaging and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2011 IEEE 8th International Symposium on Biomedical Imaging (ISBI 2011)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2010 IEEE 7th International Symposium on Biomedical Imaging (ISBI 2010)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2009 IEEE 6th International Symposium on Biomedical Imaging (ISBI 2009)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2008 IEEE 5th International Symposium on Biomedical Imaging (ISBI 2008)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2007 IEEE 4th International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2007)

  • 2006 IEEE 3rd International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2006)

  • 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2004)

  • 2002 1st IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2002)


2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers.

  • 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premier annual computer vision event comprising the main conference and severalco-located workshops and short courses. With its high quality and low cost, it provides anexceptional value for students, academics and industry researchers.

  • 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers.

  • 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conferenceand 27co-located workshops and short courses. With its high quality and low cost, it provides anexceptional value for students,academics and industry.

  • 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry.

  • 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    computer, vision, pattern, cvpr, machine, learning

  • 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. Main conference plus 50 workshop only attendees and approximately 50 exhibitors and volunteers.

  • 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry.

  • 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Topics of interest include all aspects of computer vision and pattern recognition including motion and tracking,stereo, object recognition, object detection, color detection plus many more

  • 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Sensors Early and Biologically-Biologically-inspired Vision, Color and Texture, Segmentation and Grouping, Computational Photography and Video

  • 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Concerned with all aspects of computer vision and pattern recognition. Issues of interest include pattern, analysis, image, and video libraries, vision and graphics, motion analysis and physics-based vision.

  • 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Concerned with all aspects of computer vision and pattern recognition. Issues of interest include pattern, analysis, image, and video libraries, vision and graphics,motion analysis and physics-based vision.

  • 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2006 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)


2020 IEEE International Conference on Image Processing (ICIP)

The International Conference on Image Processing (ICIP), sponsored by the IEEE SignalProcessing Society, is the premier forum for the presentation of technological advances andresearch results in the fields of theoretical, experimental, and applied image and videoprocessing. ICIP 2020, the 27th in the series that has been held annually since 1994, bringstogether leading engineers and scientists in image and video processing from around the world.


2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)

The 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2020) will be held in Metro Toronto Convention Centre (MTCC), Toronto, Ontario, Canada. SMC 2020 is the flagship conference of the IEEE Systems, Man, and Cybernetics Society. It provides an international forum for researchers and practitioners to report most recent innovations and developments, summarize state-of-the-art, and exchange ideas and advances in all aspects of systems science and engineering, human machine systems, and cybernetics. Advances in these fields have increasing importance in the creation of intelligent environments involving technologies interacting with humans to provide an enriching experience and thereby improve quality of life. Papers related to the conference theme are solicited, including theories, methodologies, and emerging applications. Contributions to theory and practice, including but not limited to the following technical areas, are invited.


More Conferences

Periodicals related to Classification tree analysis

Back to Top

Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Circuits and Systems for Video Technology, IEEE Transactions on

Video A/D and D/A, display technology, image analysis and processing, video signal characterization and representation, video compression techniques and signal processing, multidimensional filters and transforms, analog video signal processing, neural networks for video applications, nonlinear video signal processing, video storage and retrieval, computer vision, packet video, high-speed real-time circuits, VLSI architecture and implementation for video technology, multiprocessor systems--hardware and software-- ...


Communications Letters, IEEE

Covers topics in the scope of IEEE Transactions on Communications but in the form of very brief publication (maximum of 6column lengths, including all diagrams and tables.)


Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on

Methods, algorithms, and human-machine interfaces for physical and logical design, including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, and documentation of integrated-circuit and systems designs of all complexities. Practical applications of aids resulting in producible analog, digital, optical, or microwave integrated circuits are emphasized.


Computers, IEEE Transactions on

Design and analysis of algorithms, computer systems, and digital networks; methods for specifying, measuring, and modeling the performance of computers and computer systems; design of computer components, such as arithmetic units, data storage devices, and interface devices; design of reliable and testable digital devices and systems; computer networks and distributed computer systems; new computer organizations and architectures; applications of VLSI ...


More Periodicals

Most published Xplore authors for Classification tree analysis

Back to Top

Xplore Articles related to Classification tree analysis

Back to Top

Binary Trees for Classification, Regression, and Clustering, with Applications to Lossy Data Compression

Proceedings. IEEE International Symposium on Information Theory, 1993

This talk is a survey of binary tree-structured methods for classification, regression, survival analysis, and clustering. The discussion will include a survey of unifying themes, together with applications, and an introduction to mathematical issues that arise in studying their asymptotic properties. There will be special emphasis on the CAR/sup TM/ algorithms of Breiman et al., and on applications of the ...


A Splitting Theorem For Tree Construction

Proceedings. 1991 IEEE International Symposium on Information Theory, 1991

None


Software Engineering Data Analysis Techniques

Proceedings of the (19th) International Conference on Software Engineering, 1997

None


A Comparison Of Growing And Pruning Balanced And Unbalanced Tree-structured Vector Quantizers

Proceedings. 1991 IEEE International Symposium on Information Theory, 1991

None


A connectionist approach to generating oblique decision trees

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999

Neural networks and decision tree methods are two common approaches to pattern classification. While neural networks can achieve high predictive accuracy rates, the decision boundaries they form are highly nonlinear and generally difficult to comprehend. Decision trees, on the other hand, can be readily translated into a set of rules. In this paper, we present a novel algorithm for generating ...


More Xplore Articles

Educational Resources on Classification tree analysis

Back to Top

IEEE.tv Videos

"What is Big Data Analytics and Why Should I Care?" - Big Data Analytics Tutorial Part 1
Computing Based on Material Training: Application to Binary Classification Problems - IEEE Rebooting Computing 2017
ICASSP 2012 Plenary-Dr. Stephane Mallat
Solving Sparse Representation for Image Classification using Quantum D-Wave 2X Machine - IEEE Rebooting Computing 2017
Playing Games with Computational Intelligence
IMS 2012 Microapps - Improve Microwave Circuit Design Flow Through Passive Model Yield and Sensitivity Analysis
IMS 2011 Microapps - A Practical Approach to Verifying RFICs with Fast Mismatch Analysis
IMS MicroApps: Multi-Rate Harmonic Balance Analysis
IMS 2011 Microapps - Yield Analysis During EM Simulation
Conversion of Artificial Recurrent Neural Networks to Spiking Neural Networks for Low-power Neuromorphic Hardware - Emre Neftci: 2016 International Conference on Rebooting Computing
Spectrum Analysis: RF Boot Camp
Surgical Robotics: Analysis and Control Architecture for Semiautonomous Robotic Surgery
IMS 2012 Microapps - Generation and Analysis Techniques for Cost-efficient SATCOM Measurements Richard Overdorf, Agilent
Similarity and Fuzzy Logic in Cluster Analysis
New Approach of Vehicle Electrification: Analysis of Performance and Implementation Issue
A Flexible Testbed for 5G Waveform Generation and Analysis: MicroApps 2015 - Keysight Technologies
Deeper Neural Networks - Kurt Keutzer - LPIRC 2019
Collaborative Filtering II
Learning with Kernels for Streams of Structured Data
IMS 2011 Microapps - STAN Tool: A New Method for Linear and Nonlinear Stability Analysis of Microwave Circuits

IEEE-USA E-Books

  • Binary Trees for Classification, Regression, and Clustering, with Applications to Lossy Data Compression

    This talk is a survey of binary tree-structured methods for classification, regression, survival analysis, and clustering. The discussion will include a survey of unifying themes, together with applications, and an introduction to mathematical issues that arise in studying their asymptotic properties. There will be special emphasis on the CAR/sup TM/ algorithms of Breiman et al., and on applications of the clustering algorithms to predictive, pruned, tree- structured vector quantization (predictive PTSVQ). The talk is a summary of collaborations with many authors over an eighteen year period.

  • A Splitting Theorem For Tree Construction

    None

  • Software Engineering Data Analysis Techniques

    None

  • A Comparison Of Growing And Pruning Balanced And Unbalanced Tree-structured Vector Quantizers

    None

  • A connectionist approach to generating oblique decision trees

    Neural networks and decision tree methods are two common approaches to pattern classification. While neural networks can achieve high predictive accuracy rates, the decision boundaries they form are highly nonlinear and generally difficult to comprehend. Decision trees, on the other hand, can be readily translated into a set of rules. In this paper, we present a novel algorithm for generating oblique decision trees that capitalizes on the strength of both approaches. Oblique decision trees classify the patterns by testing on linear combinations of the input attributes. As a result, an oblique decision tree is usually much smaller than the univariate tree generated for the same domain. Our algorithm consists of two components: connectionist and symbolic. A three- layer feedforward neural network is constructed and pruned, a decision tree is then built from the hidden unit activation values of the pruned network. An oblique decision tree is obtained by expressing the activation values using the original input attributes. We test our algorithm on a wide range of problems. The oblique decision trees generated by the algorithm preserve the high accuracy of the neural networks, while keeping the explicitness of decision trees. Moreover, they outperform univariate decision trees generated by the symbolic approach and oblique decision trees built by other approaches in accuracy and tree size.

  • Tree-based models for speech and language

    Several applications of statistical tree-based modelling are described to problems in speech and language, including prediction of possible phonetic realizations, segment duration modelling in speech synthesis and end of sentence detection in text analysis.

  • Using classification trees for software quality models: lessons learned

    High software reliability is an important attribute of high-assurance systems. Software quality models yield timely predictions of reliability indicators on a module-by-module basis, enabling one to focus on finding faults early in development. This paper introduces the CART (Classification And Regression Trees) algorithm to practitioners in high-assurance systems engineering. This paper presents practical lessons learned in building classification trees for software quality modeling, including an innovative way to control the balance between misclassification rates. A case study of a very large telecommunications system used CART to build software quality models. The models predicted whether or not modules would have faults discovered by customers, based on various sets of software product and process metrics as independent variables. We found that a model based on two software product metrics had an accuracy that was comparable to a model based on 40 product and process metrics.

  • Globally optimal fuzzy decision trees for classification and regression

    A fuzzy decision tree is constructed by allowing the possibility of partial membership of a point in the nodes that make up the tree structure. This extension of its expressive capabilities transforms the decision tree into a powerful functional approximant that incorporates features of connectionist methods, while remaining easily interpretable. Fuzzification is achieved by superimposing a fuzzy structure over the skeleton of a CART decision tree. A training rule for fuzzy trees, similar to backpropagation in neural networks, is designed. This rule corresponds to a global optimization algorithm that fixes the parameters of the fuzzy splits. The method developed for the automatic generation of fuzzy decision trees is applied to both classification and regression problems. In regression problems, it is seen that the continuity constraint imposed by the function representation of the fuzzy tree leads to substantial improvements in the quality of the regression and limits the tendency to overfitting. In classification, fuzzification provides a means of uncovering the structure of the probability distribution for the classification errors in attribute space. This allows the identification of regions for which the error rate of the tree is significantly lower than the average error rate, sometimes even below the Bayes misclassification rate.

  • Neurocomputations in relational systems

    Strong analogies between relational structures involving some composition operators and a certain class of neural networks are described. The problem of learning the connections of the structure is addressed, and relevant learning procedures are proposed. An optimized performance index which has a strong logical flavor is proposed. Some significant implementation details are studied. Numerical examples illustrate various schemes of learning in relational structures of different levels of complexity.<<ETX>>

  • Classification tree models of software quality over multiple releases

    Software quality models are tools for focusing software enhancement efforts. Such efforts are essential for mission-critical embedded software, such as telecommunications systems, because customer-discovered faults have very serious consequences and are very expensive to repair. We present an empirical study that evaluated software quality models over several releases to address the question, "How long will a model yield useful predictions?" We also introduce the Classification And Regression Trees (CART) algorithm to software reliability engineering practitioners. We present our method for exploiting CART features to achieve a preferred balance between the two types of misclassification rates. This is desirable because misclassifications of fault-prone modules often have much more severe consequences than misclassifications of those that are not fault-prone. We developed two classification-tree models based on four consecutive releases of a very large legacy telecommunications system. Forty-two software product, process, and execution metrics were candidate predictors. The first software quality model used measurements of the first release as the training data set and measurements of the subsequent three releases as evaluation data sets. The second model used measurements of the second release as the training data set and measurements of the subsequent two releases as evaluation data sets. Both models had accuracy that would be useful to developers.



Standards related to Classification tree analysis

Back to Top

No standards are currently tagged "Classification tree analysis"


Jobs related to Classification tree analysis

Back to Top