Conferences related to Brushless motors

Back to Top

2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)

The 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2020) will be held in Metro Toronto Convention Centre (MTCC), Toronto, Ontario, Canada. SMC 2020 is the flagship conference of the IEEE Systems, Man, and Cybernetics Society. It provides an international forum for researchers and practitioners to report most recent innovations and developments, summarize state-of-the-art, and exchange ideas and advances in all aspects of systems science and engineering, human machine systems, and cybernetics. Advances in these fields have increasing importance in the creation of intelligent environments involving technologies interacting with humans to provide an enriching experience and thereby improve quality of life. Papers related to the conference theme are solicited, including theories, methodologies, and emerging applications. Contributions to theory and practice, including but not limited to the following technical areas, are invited.


2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)

Energy conversion and conditioning technologies, power electronics, adjustable speed drives and their applications, power electronics for smarter grid, energy efficiency,technologies for sustainable energy systems, converters and power supplies


2020 IEEE International Conference on Robotics and Automation (ICRA)

The International Conference on Robotics and Automation (ICRA) is the IEEE Robotics and Automation Society’s biggest conference and one of the leading international forums for robotics researchers to present their work.


2020 IEEE Power & Energy Society General Meeting (PESGM)

The Annual IEEE PES General Meeting will bring together over 2900 attendees for technical sessions, administrative sessions, super sessions, poster sessions, student programs, awards ceremonies, committee meetings, tutorials and more


2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)

The scope of the 2020 IEEE/ASME AIM includes the following topics: Actuators, Automotive Systems, Bioengineering, Data Storage Systems, Electronic Packaging, Fault Diagnosis, Human-Machine Interfaces, Industry Applications, Information Technology, Intelligent Systems, Machine Vision, Manufacturing, Micro-Electro-Mechanical Systems, Micro/Nano Technology, Modeling and Design, System Identification and Adaptive Control, Motion Control, Vibration and Noise Control, Neural and Fuzzy Control, Opto-Electronic Systems, Optomechatronics, Prototyping, Real-Time and Hardware-in-the-Loop Simulation, Robotics, Sensors, System Integration, Transportation Systems, Smart Materials and Structures, Energy Harvesting and other frontier fields.



Periodicals related to Brushless motors

Back to Top

Applied Superconductivity, IEEE Transactions on

Contains articles on the applications and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Power applications include magnet design as well asmotors, generators, and power transmission


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Control Systems Technology, IEEE Transactions on

Serves as a compendium for papers on the technological advances in control engineering and as an archival publication which will bridge the gap between theory and practice. Papers will highlight the latest knowledge, exploratory developments, and practical applications in all aspects of the technology needed to implement control systems from analysis and design through simulation and hardware.


Energy Conversion, IEEE Transaction on

Research, development, design, application, construction, installation, and operation of electric power generating facilities (along with their conventional, nuclear, or renewable sources) for the safe, reliable, and economic generation of electrical energy for general industrial, commercial, public, and domestic consumption, and electromechanical energy conversion for the use of electrical energy


Industrial Electronics, IEEE Transactions on

Theory and applications of industrial electronics and control instrumentation science and engineering, including microprocessor control systems, high-power controls, process control, programmable controllers, numerical and program control systems, flow meters, and identification systems.



Most published Xplore authors for Brushless motors

Back to Top

Xplore Articles related to Brushless motors

Back to Top

Motor Temperature Estimation Incorporating Dynamic Rotor Impedance

IEEE Power Engineering Review, 1991

None


Development and Implementation of High Performance Variable Structure Tracking Control for Brushless Motors

IEEE Power Engineering Review, 1991

None


Switched reluctance motor torque control with peak current minimization

30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004, 2004

In this paper a new instantaneous torque controller is designed for a low speed operation of a switched reluctance motor (SRM). The commutation angles are optimized in order to minimize the torque ripple which occurs at commutation regions. The ripple-free torque which can be developed by the motor is evaluated for both single and double phase excitation methods. In order ...


Design and Analysis of a New Linear Hybrid Excited Flux Reversal Motor With Inset Permanent Magnets

IEEE Transactions on Magnetics, 2014

This paper proposes a new linear hybrid excited flux reversal motor with inset permanent magnets (PMs). The proposed motor adopts the excitation windings in the primary, hence offering the desired flux control capability. The novelty of the proposed motor is to design a modular primary structure. Then, it has very symmetrical and sinusoidal back electromotive force (back-EMF) and smooth thrust ...


Comparison of five topologies rotor permanent magnet motors with improved fault-tolerance

2013 IEEE International Symposium on Industrial Electronics, 2013

This paper presents a detailed comparison of five topologies for rotor permanent magnet (RPM) motors with improved fault-tolerance. The five topologies include one surface-mounted topology, one surface-insert topology and three interior topologies (spoke-type, conventional and V shape). In these motors, the fault-tolerant teeth (FTT) and the concentrated winding are adopted to offer the merit of phase decoupling, which can make ...



Educational Resources on Brushless motors

Back to Top

IEEE-USA E-Books

  • Motor Temperature Estimation Incorporating Dynamic Rotor Impedance

    None

  • Development and Implementation of High Performance Variable Structure Tracking Control for Brushless Motors

    None

  • Switched reluctance motor torque control with peak current minimization

    In this paper a new instantaneous torque controller is designed for a low speed operation of a switched reluctance motor (SRM). The commutation angles are optimized in order to minimize the torque ripple which occurs at commutation regions. The ripple-free torque which can be developed by the motor is evaluated for both single and double phase excitation methods. In order to minimize the peak current observed at the end of each active region, a current limiting control law based on torque-current characteristics is proposed. Simulation results show that the proposed torque control strategy allows good torque tracking with low torque ripples and minimum peak currents. Moreover, it is simple to implement since it does not require time consuming online computations.

  • Design and Analysis of a New Linear Hybrid Excited Flux Reversal Motor With Inset Permanent Magnets

    This paper proposes a new linear hybrid excited flux reversal motor with inset permanent magnets (PMs). The proposed motor adopts the excitation windings in the primary, hence offering the desired flux control capability. The novelty of the proposed motor is to design a modular primary structure. Then, it has very symmetrical and sinusoidal back electromotive force (back-EMF) and smooth thrust even at various excitation currents. In addition, because of the inset PMs, the proposed motor is free from PM irreversible demagnetization. The electromagnetic performances of the proposed motor are analyzed using the time-stepping finite-element method, such as magnetic field distribution, back-EMF, and thrust, verifying the effectiveness of the theoretical analysis.

  • Comparison of five topologies rotor permanent magnet motors with improved fault-tolerance

    This paper presents a detailed comparison of five topologies for rotor permanent magnet (RPM) motors with improved fault-tolerance. The five topologies include one surface-mounted topology, one surface-insert topology and three interior topologies (spoke-type, conventional and V shape). In these motors, the fault-tolerant teeth (FTT) and the concentrated winding are adopted to offer the merit of phase decoupling, which can make these motors offer the fault-tolerance. The performance characteristics, which include the flux density of air-gap, back electromotive force (back-EMF) and its harmonics, magnet mass and cogging torque are compared and analyzed. These electromagnetic characteristics of these proposed motors are analyzed by using the time-stepping finite-element method (FEM). The aim of the paper is to give some guidance and references for RPM motor designers.

  • Design of a Continuous Positive Bi-Pressure System BPAP as Respiratory Support - Part I

    In this document, the part I of the development of a continuous low-cost positive bi-pressure system as a respiratory support for patients with respiratory disorders while they sleep, such as sleep obstructive apnea- hypopnea, will be discussed. A description is given of the main requirements of this device, the features it must comply with and the components that comprise it.

  • An integrated magnetic-geared permanent-magnet in-wheel motor drive for electric vehicles

    This paper proposes an integrated in-wheel motor for electric vehicles. It can offer the advantages of lightweight, compact size, high efficiency and low- speed high-torque operation. The key is to artfully integrate a coaxial magnetic gear into a permanent-magnet (PM) brushless motor in such a way that they can share a common PM rotor, hence the low-speed requirement for direct driving and the high-speed requirement for compact motor design can be achieved simultaneously. Both the static and dynamic characteristics of the proposed motor have been studied by time-stepping finite element method. A 500 W prototype has also been built up to verify the validity of the proposed motor.

  • Effect of magnetization direction on iron loss characteristic in brushless DC motor

    In this paper, we introduce two kinds of magnetization type, and investigate the effect of its direction on the iron loss in brushless DC (BLDC) motor using a 2-D time-stepped voltage source finite-element method (FEM). The iron losses consist of hysteresis and eddy current loss is calculated from the time variation of the magnetic field distribution. As a result, the magnetization direction that is more advantageous in terms of the iron loss characteristic of the BLDCM is suggested.

  • Design and development of a new controller for disk-drive spindle motors

    Current disk drive motor controllers are simple in design but inefficient. Brushless operation of spindle motors requires an inverter system which normally uses MOSFETs as switches. However, not all of the MOSFETS are operated in the perfect switch-mode. Some of them are operated in the linear mode and hence become lossy. To overcome this problem, the conventional method is to use pulse width modulated (PWM) controllers. However, due to switching losses, which increase as switching frequency increases, PWM controllers are normally operated below 100 kHz. This may limit the scope of really miniaturizing controllers. The controller presented in this paper was developed using a quasi-resonant converter (QRC) and all the MOSFETS are operated as perfect switches. This new controller design was built and tested. Its performance was compared with that of a conventional PWM controller and was found to consume less power from the supply, and also requires less power to keep the motor running at constant speeds. This paper discusses the idea behind this new controller and gives the analysis and design. Some test results are also presented in the paper.

  • An inverter-fed self-controlled 'brushless' DC series motor with the field winding in the DC link

    The paper examines the basic operation of a self-controlled synchronous motor driven by a 3-phase MOSFET inverter with the field winding located in the DC link yielding series characteristics. A new approach to the analytical and experimental study of the drive with the switches conducting for both 120/spl deg/ and 180/spl deg/ is presented and typical results, both simulation and experimental, are shown and the performance characteristics compared. The effect of shifting the rotor position sensor is also studied in both cases. It is observed that the resulting drive system is simple, able to operate with reduced torque ripple and voltage spikes and the characteristics of the drive are well suited for traction/transit system and battery/flywheel energy storage systems.