Conferences related to Cardiac tissue

Back to Top

2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invitedsessions of the latest significant findings and developments in all the major fields of biomedical engineering.Submitted papers will be peer reviewed. Accepted high quality papers will be presented in oral and postersessions, will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE


2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020)

The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2020 will be the 17th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2020 meeting will continue this tradition of fostering cross-fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging.ISBI 2019 will be the 16th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2019 meeting will continue this tradition of fostering cross fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2018 will be the 15th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2018 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2017 will be the 14th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2017 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forumfor the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2016 willbe the thirteenth meeting in this series. The previous meetings have played a leading role in facilitatinginteraction between researchers in medical and biological imaging. The 2016 meeting will continue thistradition of fostering crossfertilization among different imaging communities and contributing to an integrativeapproach to biomedical imaging across all scales of observation.

  • 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2015 will be the 12th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2014 will be the eleventh meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013)

    To serve the biological, biomedical, bioengineering, bioimaging and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2011 IEEE 8th International Symposium on Biomedical Imaging (ISBI 2011)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2010 IEEE 7th International Symposium on Biomedical Imaging (ISBI 2010)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2009 IEEE 6th International Symposium on Biomedical Imaging (ISBI 2009)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2008 IEEE 5th International Symposium on Biomedical Imaging (ISBI 2008)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2007 IEEE 4th International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2007)

  • 2006 IEEE 3rd International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2006)

  • 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2004)

  • 2002 1st IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2002)


2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers.

  • 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premier annual computer vision event comprising the main conference and severalco-located workshops and short courses. With its high quality and low cost, it provides anexceptional value for students, academics and industry researchers.

  • 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers.

  • 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conferenceand 27co-located workshops and short courses. With its high quality and low cost, it provides anexceptional value for students,academics and industry.

  • 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry.

  • 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    computer, vision, pattern, cvpr, machine, learning

  • 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. Main conference plus 50 workshop only attendees and approximately 50 exhibitors and volunteers.

  • 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry.

  • 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Topics of interest include all aspects of computer vision and pattern recognition including motion and tracking,stereo, object recognition, object detection, color detection plus many more

  • 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Sensors Early and Biologically-Biologically-inspired Vision, Color and Texture, Segmentation and Grouping, Computational Photography and Video

  • 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Concerned with all aspects of computer vision and pattern recognition. Issues of interest include pattern, analysis, image, and video libraries, vision and graphics, motion analysis and physics-based vision.

  • 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Concerned with all aspects of computer vision and pattern recognition. Issues of interest include pattern, analysis, image, and video libraries, vision and graphics,motion analysis and physics-based vision.

  • 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2006 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)


2020 IEEE International Conference on Image Processing (ICIP)

The International Conference on Image Processing (ICIP), sponsored by the IEEE SignalProcessing Society, is the premier forum for the presentation of technological advances andresearch results in the fields of theoretical, experimental, and applied image and videoprocessing. ICIP 2020, the 27th in the series that has been held annually since 1994, bringstogether leading engineers and scientists in image and video processing from around the world.


2020 IEEE International Conference on Robotics and Automation (ICRA)

The International Conference on Robotics and Automation (ICRA) is the IEEE Robotics and Automation Society’s biggest conference and one of the leading international forums for robotics researchers to present their work.


More Conferences

Periodicals related to Cardiac tissue

Back to Top

Biomedical Circuits and Systems, IEEE Transactions on

The Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems ...


Biomedical Engineering, IEEE Reviews in

The IEEE Reviews in Biomedical Engineering will review the state-of-the-art and trends in the emerging field of biomedical engineering. This includes scholarly works, ranging from historic and modern development in biomedical engineering to the life sciences and medicine enabled by technologies covered by the various IEEE societies.


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Circuits and Systems I: Regular Papers, IEEE Transactions on

Part I will now contain regular papers focusing on all matters related to fundamental theory, applications, analog and digital signal processing. Part II will report on the latest significant results across all of these topic areas.


Computing in Science & Engineering

Physics, medicine, astronomy—these and other hard sciences share a common need for efficient algorithms, system software, and computer architecture to address large computational problems. And yet, useful advances in computational techniques that could benefit many researchers are rarely shared. To meet that need, Computing in Science & Engineering (CiSE) presents scientific and computational contributions in a clear and accessible format. ...


More Periodicals

Most published Xplore authors for Cardiac tissue

Back to Top

Xplore Articles related to Cardiac tissue

Back to Top

Automated detection of aortic valve closure in apical tissue Doppler images

IEEE Ultrasonics Symposium, 2004, 2004

Ultrasound tissue Doppler imaging (TDI) can be used to measure velocities of moving cardiac tissue during the cardiac cycle. Aortic valve closure (AVC) can be seen as a notch occurring after ejection, but before early relaxation in velocity/time curves from apical TDI images of the base of the left ventricle. The timing of AVC may be determined by manually looking ...


Dominant Frequency Maps of Epicardial and Body Surface Potentials During Ventricular Fibrillation - a computer model study

2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging, 2007

Recent findings indicate that stable organized centers of rapid activity (mother rotors) can maintain ventricular fibrillation (VF). Two computer models (one with a simplified cubic geometry and a morphologically correct one) were developed for understanding how this organized intracardiac cellular activity is reflected on the body surface during VF. Both models contained a driving region of fast periodic activity in ...


An inexpensive alternative bath system for electrophysiological characterization of isolated cardiac tissue

2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011

A tissue bath system, to be used as an alternative to complex perfusion chambers, was constructed for use in cardiac electrophysiological studies. This system consists of an acrylic chamber to hold circulating physiological medium such as DMEM, suspended in a water bath warmed by a hot plate. Temperature and pH were controlled to mimic physiological conditions. Rat and porcine cardiac ...


Using models of the passive cardiac conductivity and full heart anisotropic bidomain to study the epicardial potentials in ischemia

The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004

In this paper we present a multi-scale approach for cardiac modeling. Based on the histology of cardiac tissue we created a geometrical model at a cellular scale to compute the effective conductivity of a piece of cardiac tissue. In turn, the conductivity values obtained from this cellular scale model were used in a whole heart model in which we simulated ...


Numerical Simulation Of Intra And Extracellular Electric Fields In A Tridimensional Anisotropic Model Of Cardiac Muscle

Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991, 1991

None


More Xplore Articles

Educational Resources on Cardiac tissue

Back to Top

IEEE-USA E-Books

  • Automated detection of aortic valve closure in apical tissue Doppler images

    Ultrasound tissue Doppler imaging (TDI) can be used to measure velocities of moving cardiac tissue during the cardiac cycle. Aortic valve closure (AVC) can be seen as a notch occurring after ejection, but before early relaxation in velocity/time curves from apical TDI images of the base of the left ventricle. The timing of AVC may be determined by manually looking for this event. An automated algorithm first detecting the timing of early relaxation and mitral valve opening, is however also able to determine the timing of AVC by searching in both space and time. The automated algorithm was tested on the apical four-chamber, two-chamber and long axis views of 16 healthy subjects. In 88% of the cine-loops the algorithm estimated the timing of AVC within 20 msec off the start of the second heart sound as visible in simultaneously recorded calibrated phonocardiograms. Automated detection of AVC might save manual effort, and provide a marker separating ejection and diastole for further automated analysis.

  • Dominant Frequency Maps of Epicardial and Body Surface Potentials During Ventricular Fibrillation - a computer model study

    Recent findings indicate that stable organized centers of rapid activity (mother rotors) can maintain ventricular fibrillation (VF). Two computer models (one with a simplified cubic geometry and a morphologically correct one) were developed for understanding how this organized intracardiac cellular activity is reflected on the body surface during VF. Both models contained a driving region of fast periodic activity in the cardiac tissue. Comparing the dominant frequency maps of the body surface and the epicardium a spatial- temporal low pass filtering can be recognized. Whereas on the myocardium the organized region occurred from the mother rotor and a chaotic fibrillatory conduction in the rest of the cardiac tissue can be measured, no organized pattern was observable on the body surface and the DF was reduced in both models. It was shown that wave propagation transforms the spatial low pass filtering of the thorax into a temporal low pass in the far field. It hampers the observation of cardiac organization from the body surface. Note that no RC low pass structure was included in the models.

  • An inexpensive alternative bath system for electrophysiological characterization of isolated cardiac tissue

    A tissue bath system, to be used as an alternative to complex perfusion chambers, was constructed for use in cardiac electrophysiological studies. This system consists of an acrylic chamber to hold circulating physiological medium such as DMEM, suspended in a water bath warmed by a hot plate. Temperature and pH were controlled to mimic physiological conditions. Rat and porcine cardiac tissues, were used to test viability of the conditions presented in the bath system. Using a cardiac mapping system, the tissues were stimulated and responses recorded. From the recordings we were able to calculate conduction velocities and spatial dispersion of activation indices. The results are comparable to previous in-vivo work, which suggests that the tissue bath system design can maintain tissue viability. This tissue bath system is a relatively simple alternative for ex-vivo testing of cardiac tissues.

  • Using models of the passive cardiac conductivity and full heart anisotropic bidomain to study the epicardial potentials in ischemia

    In this paper we present a multi-scale approach for cardiac modeling. Based on the histology of cardiac tissue we created a geometrical model at a cellular scale to compute the effective conductivity of a piece of cardiac tissue. In turn, the conductivity values obtained from this cellular scale model were used in a whole heart model in which we simulated regional, subendocardial ischemia. Histological changes at a cellular level led to changes in the effective conductivity tensor of the tissue, which in turn resulted in changes in the epicardial potential patterns during the ST-interval. Two effects were studied using this multi-scale approach: (1) the influence of a dynamically growing ischemic region on the epicardial potentials, and (2) the influence of a dynamically changing conductivity in the ischemic zone due to changes in the underlying pathology. One specific finding was the presence of epicardial patterns consisting of a central elevation and two opposite depressions at the edges of the ischemic zone which rotated as the ischemia became more transmural. In addition, the epicardial potentials decreased in magnitude with the duration of the ischemia due to changes in the effective conductivity of the ischemic tissue predicted by the cellular level model.

  • Numerical Simulation Of Intra And Extracellular Electric Fields In A Tridimensional Anisotropic Model Of Cardiac Muscle

    None

  • Thiopental-induced Blockade Of An Anomalous Rectifying K+ Current In Cardiac Tissue

    None

  • Spiral wave meandering, wavefront-obstacle separation and cardiac arrhythmias

    Spiral wave tips rotate either around a circular core or meander, inscribing a non-circular pattern. The transition to meandering was found to be equivalent to the transition from wave tip separation to wave tip attachment around the end of an unexcitable strip of thickness comparable to the wavefront thickness. The medium properties defining the transition from circular to non- circular spiral tip movement is accurately predicted by the balance of the diffusive fluxes in the vicinity of the wave tip within the boundary layer of the order of the wavefront thickness. Small changes in the boundary layer charge can dramatically alter spiral tip motion and provide a new tool for control and classification of cardiac arrhythmias.

  • Towards the prediction of transient ST changes

    This paper studies the ECG signal prior to a transient ST change. Two hypotheses are proposed. The first is that various types of ST changes can be differentiated using the signal just prior to the ST event. The second is that ischemic ST changes can be differentiated from non-events, again using the signal prior to the ST event. A machine learning approach, based on Gaussian mixture models and maximum likelihood Bayesian classification, is used to analyze the ECG signal. Two sets of feature extraction techniques, reconstructed phase space and Karhunen Loeve transform, are applied, both of which capture morphological characteristics of the ECG signal. The results in addressing the first hypothesis show that information indicative of the type of ST change is present in the signal prior to the onset of the ST event; however the classification accuracy is low. The second hypothesis cannot be affirmed with the results presented here

  • Nanotechnology-derived hydrogels for cardiac tissue replacement

    The national organ transplant waiting list is growing five times faster than the rate of organ donation, indicating a need to provide a more plentiful source of tissue replacements. Furthermore, the national number one cause for human death is heart disease. Because of the high percentage of heart failure and a low number of successful organ donations, studies are now focusing on the design of new generation biomaterials and functional tissue constructs for specialized tissue repair and replacement. Developing such biomaterials requires the fabrication of scaffolds that mimic in vivo extracellular matrices (ECM). The objective of this study was to design a 'smart' biomaterial that mimics conditions in vivo, creating a micro-and nano- environment suitable for healthy cardiac tissue growth and function.

  • The sternum as an electrical shield

    Introduction - The TASER®conducted electrical weapon (CEW) delivers electrical pulses that can temporarily incapacitate subjects. We analyzed the distribution of TASER CEW currents in tissues posterior to the sternum to understand the likelihood of triggering cardiac arrhythmias. We also assessed the electrical `shielding' effects of the sternum. Methods and Results - Finite element modeling (FEM) was used to approximate the current density and electric field strength in tissues around the sternum. We analyzed 2 CEW dart deployment scenarios: (a) both darts over the anterior aspect of the sternum; and (b) a CEW dart anterior to the sternum and the other over the abdomen. In both scenarios, the sternum provided significant attenuation of CEW currents. Particularly, both FEMs predicted that the residual electrical current or charge from CEWs would be insufficient to cause either cardiac capture or induction of ventricular fibrillation at locations where cardiac tissue would reside relative to the posterior aspect of the sternum. Conclusion - The sternum offers significant `shielding' effect and protects the tissues posterior to it against effects of electrical current flow from anteriorly- placed CEW electrodes.



Standards related to Cardiac tissue

Back to Top

No standards are currently tagged "Cardiac tissue"


Jobs related to Cardiac tissue

Back to Top