Conferences related to Computer Aided Surgery

Back to Top

2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)

The Conference focuses on all aspects of instrumentation and measurement science andtechnology research development and applications. The list of program topics includes but isnot limited to: Measurement Science & Education, Measurement Systems, Measurement DataAcquisition, Measurements of Physical Quantities, and Measurement Applications.


2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops andinvitedsessions of the latest significant findings and developments in all the major fields ofbiomedical engineering.Submitted papers will be peer reviewed. Accepted high quality paperswill be presented in oral and postersessions, will appear in the Conference Proceedings and willbe indexed in PubMed/MEDLINE & IEEE Xplore


2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)

Neural Engineering

  • 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER)

    Neural Engineering is an emerging core discipline,which coalesces neuroscience with engineering.Members of both the Neuroscience and Engineering Communities areencouraged to attend this highly multidisciplinarymeeting. The conference will highlight the emergingengineering innovations in the restoration andenhancement of impaired sensory, motor, andcognitive functions, novel engineering for deepeningknowledge of brain function, and advanced designand use of neurotechnologies

  • 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)

    Neural engineering deals with many aspects of basic and clinical problemsassociated with neural dysfunction including the representation of sensory and motor information, theelectrical stimulation of the neuromuscular system to control the muscle activation and movement, theanalysis and visualization of complex neural systems at multi -scale from the single -cell and to the systemlevels to understand the underlying mechanisms, the development of novel neural prostheses, implantsand wearable devices to restore and enhance the impaired sensory and motor systems and functions.

  • 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)

    Neural engineering deals with many aspects of basic and clinical problems associated with neural dysfunction including the representation of sensory and motor information, the electrical stimulation of the neuromuscular system to control the muscle activation and movement, the analysis and visualization of complex neural systems at multi-scale from the single-cell and to the system levels to understand the underlying mechanisms, the development of novel neural prostheses, implants and wearable devices to restore and enhance the impaired sensory and motor systems and functions.

  • 2011 5th International IEEE/EMBS Conference on Neural Engineering (NER)

    highlight the emerging field, Neural Engineering that unites engineering, physics, chemistry, mathematics, computer science with molecular, cellular, cognitive and behavioral neuroscience and encompasses such areas as replacing or restoring lost sensory and motor abilities, defining the organizing principles and underlying mechanisms of neural systems, neurorobotics, neuroelectronics, brain imaging and mapping, cognitive science and neuroscience.

  • 2009 4th International IEEE/EMBS Conference on Neural Engineering (NER)

    highlight the emerging field, Neural Engineering that unites engineering, physics, chemistry, mathematics, computer science with molecular, cellular, cognitive and behavioral neuroscience and encompasses such areas as replacing or restoring lost sensory and motor abilities, defining the organizing principles and underlying mechanisms of neural systems, neurorobotics, neuroelectronics, brain imaging and mapping, cognitive science and neuroscience.

  • 2007 3rd International IEEE/EMBS Conference on Neural Engineering

  • 2005 2nd International IEEE/EMBS Conference on Neural Engineering

  • 2003 1st International IEEE/EMBS Conference on Neural Engineering


2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI)

The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging.ISBI 2019 will be the 16th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2019 meeting will continue this tradition of fostering cross fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.


2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)

This conference is the annual premier meeting on the use of instrumentation in the Nuclear and Medical fields. The meeting has a very long history of providing an exciting venue for scientists to present their latest advances, exchange ideas, renew existing collaboration and form new ones. The NSS portion of the conference is an ideal forum for scientists and engineers in the field of Nuclear Science, radiation instrumentation, software engineering and data acquisition. The MIC is one of the most informative venues on the state-of-the art use of physics, engineering, and mathematics in Nuclear Medicine and related imaging modalities, such as CT and increasingly so MRI, through the development of hybrid devices


More Conferences

Periodicals related to Computer Aided Surgery

Back to Top

Automation Science and Engineering, IEEE Transactions on

The IEEE Transactions on Automation Sciences and Engineering (T-ASE) publishes fundamental papers on Automation, emphasizing scientific results that advance efficiency, quality, productivity, and reliability. T-ASE encourages interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, operations research, and other fields. We welcome results relevant to industries such as agriculture, biotechnology, healthcare, home automation, maintenance, manufacturing, pharmaceuticals, retail, ...


Biomedical Engineering, IEEE Reviews in

The IEEE Reviews in Biomedical Engineering will review the state-of-the-art and trends in the emerging field of biomedical engineering. This includes scholarly works, ranging from historic and modern development in biomedical engineering to the life sciences and medicine enabled by technologies covered by the various IEEE societies.


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Computer

Computer, the flagship publication of the IEEE Computer Society, publishes peer-reviewed technical content that covers all aspects of computer science, computer engineering, technology, and applications. Computer is a resource that practitioners, researchers, and managers can rely on to provide timely information about current research developments, trends, best practices, and changes in the profession.


Computer Graphics and Applications, IEEE

IEEE Computer Graphics and Applications (CG&A) bridges the theory and practice of computer graphics. From specific algorithms to full system implementations, CG&A offers a strong combination of peer-reviewed feature articles and refereed departments, including news and product announcements. Special Applications sidebars relate research stories to commercial development. Cover stories focus on creative applications of the technology by an artist or ...


More Periodicals

Most published Xplore authors for Computer Aided Surgery

Back to Top

Xplore Articles related to Computer Aided Surgery

Back to Top

Estimation of Tool Pose Based on Force–Density Correlation During Robotic Drilling

IEEE Transactions on Biomedical Engineering, 2013

The application of image-guided systems with or without support by surgical robots relies on the accuracy of the navigation process, including patient-to- image registration. The surgeon must carry out the procedure based on the information provided by the navigation system, usually without being able to verify its correctness beyond visual inspection. Misleading surrogate parameters such as the fiducial registration error ...


A Portable Image Overlay Projection Device for Computer-Aided Open Liver Surgery

IEEE Transactions on Biomedical Engineering, 2011

Image overlay projection is a form of augmented reality that allows surgeons to view underlying anatomical structures directly on the patient surface. It improves intuitiveness of computer-aided surgery by removing the need for sight diversion between the patient and a display screen and has been reported to assist in 3-D understanding of anatomical structures and the identification of target and ...


Computer aided surgery system (CAS): Development of surgical simulation and planning system with three dimensional graphic reconstruction

[1990] Proceedings of the First Conference on Visualization in Biomedical Computing, 1990

To assess the feasibility of computer-aided surgery (CAS) with three- dimensional (3D) graphic reconstruction, the authors describe an experiment in which direct needle punctures were made into porcine liver phantoms on the basis of a collision assessment. A 90% success rate was achieved when a generalized cylinder method for vessel reconstruction was used. A clinical trial of this system for ...


Computer aided surgery and micro machine

MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995

Computer aided surgery (CAS) is a new surgical field to realize minimally invasive surgical therapy, using various computer technologies: three dimensional medical images, surgical robots and so on. Three dimensional medical images are the new eyes of a surgeon, and surgical robots are the new hands. In order to realize minimally invasive therapy, it is necessary to develop new surgical ...


A fully automatic calibration framework for navigated ultrasound imaging

2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010

Navigated ultrasound (US) imaging is used for the intra-operative acquisition of 3D image data during image-guided surgery. The presented approach includes the design of a compact and easy to use US calibration device and its integration into a software application for navigated liver surgery. User interaction during the calibration process is minimized through automatic detection of the calibration process followed ...


More Xplore Articles

Educational Resources on Computer Aided Surgery

Back to Top

IEEE-USA E-Books

  • Estimation of Tool Pose Based on Force–Density Correlation During Robotic Drilling

    The application of image-guided systems with or without support by surgical robots relies on the accuracy of the navigation process, including patient-to- image registration. The surgeon must carry out the procedure based on the information provided by the navigation system, usually without being able to verify its correctness beyond visual inspection. Misleading surrogate parameters such as the fiducial registration error are often used to describe the success of the registration process, while a lack of methods describing the effects of navigation errors, such as those caused by tracking or calibration, may prevent the application of image guidance in certain accuracy-critical interventions. During minimally invasive mastoidectomy for cochlear implantation, a direct tunnel is drilled from the outside of the mastoid to a target on the cochlea based on registration using landmarks solely on the surface of the skull. Using this methodology, it is impossible to detect if the drill is advancing in the correct direction and that injury of the facial nerve will be avoided. To overcome this problem, a tool localization method based on drilling process information is proposed. The algorithm estimates the pose of a robot-guided surgical tool during a drilling task based on the correlation of the observed axial drilling force and the heterogeneous bone density in the mastoid extracted from 3-D image data. We present here one possible implementation of this method tested on ten tunnels drilled into three human cadaver specimens where an average tool localization accuracy of 0.29 mm was observed.

  • A Portable Image Overlay Projection Device for Computer-Aided Open Liver Surgery

    Image overlay projection is a form of augmented reality that allows surgeons to view underlying anatomical structures directly on the patient surface. It improves intuitiveness of computer-aided surgery by removing the need for sight diversion between the patient and a display screen and has been reported to assist in 3-D understanding of anatomical structures and the identification of target and critical structures. Challenges in the development of image overlay technologies for surgery remain in the projection setup. Calibration, patient registration, view direction, and projection obstruction remain unsolved limitations to image overlay techniques. In this paper, we propose a novel, portable, and handheld-navigated image overlay device based on miniature laser projection technology that allows images of 3-D patient- specific models to be projected directly onto the organ surface intraoperatively without the need for intrusive hardware around the surgical site. The device can be integrated into a navigation system, thereby exploiting existing patient registration and model generation solutions. The position of the device is tracked by the navigation system's position sensor and used to project geometrically correct images from any position within the workspace of the navigation system. The projector was calibrated using modified camera calibration techniques and images for projection are rendered using a virtual camera defined by the projectors extrinsic parameters. Verification of the device's projection accuracy concluded a mean projection error of 1.3 mm. Visibility testing of the projection performed on pig liver tissue found the device suitable for the display of anatomical structures on the organ surface. The feasibility of use within the surgical workflow was assessed during open liver surgery. We show that the device could be quickly and unobtrusively deployed within the sterile environment.

  • Computer aided surgery system (CAS): Development of surgical simulation and planning system with three dimensional graphic reconstruction

    To assess the feasibility of computer-aided surgery (CAS) with three- dimensional (3D) graphic reconstruction, the authors describe an experiment in which direct needle punctures were made into porcine liver phantoms on the basis of a collision assessment. A 90% success rate was achieved when a generalized cylinder method for vessel reconstruction was used. A clinical trial of this system for surgical planning shows its potential for use in abdominal surgery.<<ETX>>

  • Computer aided surgery and micro machine

    Computer aided surgery (CAS) is a new surgical field to realize minimally invasive surgical therapy, using various computer technologies: three dimensional medical images, surgical robots and so on. Three dimensional medical images are the new eyes of a surgeon, and surgical robots are the new hands. In order to realize minimally invasive therapy, it is necessary to develop new surgical devices (needles for percutaneous puncture, manipulators, fine endoscopes and so on) using micro machine technology. The main applications of the CAS system are liver cancer treatment therapy, laparoscopic surgery, endoscopic surgery, the stereotaxic neurosurgery, and corneal microsurgery.

  • A fully automatic calibration framework for navigated ultrasound imaging

    Navigated ultrasound (US) imaging is used for the intra-operative acquisition of 3D image data during image-guided surgery. The presented approach includes the design of a compact and easy to use US calibration device and its integration into a software application for navigated liver surgery. User interaction during the calibration process is minimized through automatic detection of the calibration process followed by automatic image segmentation, calculation of the calibration transform and validation of the obtained result. This leads to a fast, interaction-free and fully automatic calibration procedure enabling intra-operative US calibration being performed by the surgical user.

  • 3D processing of MRI images of the knee for for computer aided surgery planning

    Magnetic resonance imaging has become a very powerful tool to investigate articular cartilage in patients with degenerative joint disease. We have set up a system for tridimensional reconstruction of the knee structure and completely automated cartilage segmentation based on MRI images.

  • Millimeter Accuracy Carrier Phase Radiolocalization for Computer-Aided Surgery

    The localization is a transverse problem to many fields. In medical applications, high accuracy localization of instruments in confined environment is of main importance. The main objective of this work is to demonstrate the feasibility of a high accuracy radiofrequency localization for minimally-invasive surgery. A new approach of carrier phase indoor radio localization based on a multiple transmitters/single receiver architecture is proposed. Results from both simulation and real measurements show that, in a multipath propagation environment, a millimeter accuracy can be obtained

  • VISLAN computer-aided surgery

    Measurement systems using video cameras and image processing have matured to the point where they can guide surgeons. This article is mainly about VISLAN (VISible LANdmarks), a particularly challenging application of computer vision to support neurosurgery-but there are several examples of similar techniques being applied in more routine situations. Some of these examples are discussed. VISLAN involves navigating surgical instruments inside the skull. The potential benefits are substantial in VISLAN's medical application. The risks of surgery will be reduced by enabling plans to be followed more accurately Alternatively, the ability to follow detailed plans can allow the surgeon to undertake more complex procedures than would otherwise be contemplated. There are also benefits in lower costs, because additional preoperative scans for surgical planning may be avoided and the length of operations may be shortened reducing the risk of surgery.<<ETX>>

  • The Maxillo-Facial Surgery System for guided cancer resection and bone reconstruction

    The aim of this work was to develop a new computer system to support oncologic surgery in the maxillo-facial area (Maxillo-Facial Surgery System). The system applies DICOM data (Magnetic Resonance Imaging - MRI and Computed Tomography - CT scans) during the phase of virtual planning of surgical scenario, to identify the location and spatial geometry of cancer, as well as it serves to plan resection and reconstruction of bone tissue using bio-implants. The intraoperative phase applies computer aided optical and electromagnetic navigation systems to track the position of surgical instruments and bone segments. This work presents results of planning and computer aided surgery on a skull and mandible phantom and selected results of oncologic patient's CT scans analysis. The accuracy of the prepared system has been expressed with Target Registration Error value equals about 0.75 mm (when the titanium markers in registration procedure are applied). The system is currently clinically tested in M. Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland.

  • The control unit for a head mounted operating microscope used for augmented reality visualization in computer aided surgery

    Two main concepts of head mounted displays (HMD) for augmented reality (AR) visualization exist, the optical and video-see through type. Several research groups have pursued both approaches for utilizing HMDs for computer aided surgery. While the hardware requirements for a video see through HMD to achieve acceptable time delay and frame rate seem to be enormous the clinical acceptance of such a device is doubtful from a practical point of view. Starting from previous work in displaying additional computer-generated graphics in operating microscopes, we have adapted a miniature head mounted operating microscope for AR by integrating two very small computer displays. To calibrate the projection parameters of this so called varioscope AR we have used Tsai's (1987) algorithm for camera calibration. Connection to a surgical navigation system was performed by defining an open interface to the control unit of the varioscope AR. The control unit consists of a standard PC with an dual head graphics adapter to render and display the desired augmentation of the scene. We connected this control unit to an computer aided surgery (CAS) system by the TCP/IP interface. In this paper we present the control unit for the HMD and its software design. We tested two different optical tracking systems, the Flash-point (Image Guided Technologies, Boulder, CO), which provided about 10 frames per second, and the Polaris (Northern Digital, Ontario, Can) which provided at least 30 frames per second, both with a time delay of one frame.



Standards related to Computer Aided Surgery

Back to Top

No standards are currently tagged "Computer Aided Surgery"


Jobs related to Computer Aided Surgery

Back to Top