Conferences related to Acoustic Navigation

Back to Top

2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)

The Conference focuses on all aspects of instrumentation and measurement science andtechnology research development and applications. The list of program topics includes but isnot limited to: Measurement Science & Education, Measurement Systems, Measurement DataAcquisition, Measurements of Physical Quantities, and Measurement Applications.


Oceans 2020 MTS/IEEE GULF COAST

To promote awareness, understanding, advancement and application of ocean engineering and marine technology. This includes all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.

  • OCEANS 2018 MTS/IEEE Charleston

    Ocean, coastal, and atmospheric science and technology advances and applications

  • OCEANS 2017 - Anchorage

    Papers on ocean technology, exhibits from ocean equipment and service suppliers, student posters and student poster competition, tutorials on ocean technology, workshops and town meetings on policy and governmental process.

  • OCEANS 2016

    The Marine Technology Scociety and the Oceanic Engineering Society of the IEEE cosponor a joint annual conference and exposition on ocean science, engineering, and policy. The OCEANS conference covers four days. One day for tutorials and three for approx. 500 technical papers and 150 -200 exhibits.

  • OCEANS 2015

    The Marine Technology Scociety and the Oceanic Engineering Society of the IEEE cosponor a joint annual conference and exposition on ocean science, engineering, and policy. The OCEANS conference covers four days. One day for tutorials and three for approx. 450 technical papers and 150-200 exhibits.

  • OCEANS 2014

    The OCEANS conference covers four days. One day for tutorials and three for approx. 450 technical papers and 150-200 exhibits.

  • OCEANS 2013

    Three days of 8-10 tracks of technical sessions (400-450 papers) and concurent exhibition (150-250 exhibitors)

  • OCEANS 2012

    Ocean related technology. Tutorials and three days of technical sessions and exhibits. 8-12 parallel technical tracks.

  • OCEANS 2011

    The Marine Technology Society and the Oceanic Engineering Scociety of the IEEE cosponsor a joint annual conference and exposition on ocean science engineering, and policy.

  • OCEANS 2010

    The Marine Technology Society and the Oceanic Engineering Scociety of the IEEE cosponsor a joint annual conference and exposition on ocean science engineering, and policy.

  • OCEANS 2009

  • OCEANS 2008

    The Marine Technology Society (MTS) and the Oceanic Engineering Society (OES) of the Institute of Electrical and Electronic Engineers (IEEE) cosponsor a joint conference and exposition on ocean science, engineering, education, and policy. Held annually in the fall, it has become a focal point for the ocean and marine community to meet, learn, and exhibit products and services. The conference includes technical sessions, workshops, student poster sessions, job fairs, tutorials and a large exhibit.

  • OCEANS 2007

  • OCEANS 2006

  • OCEANS 2005

  • OCEANS 2004

  • OCEANS 2003

  • OCEANS 2002

  • OCEANS 2001

  • OCEANS 2000

  • OCEANS '99

  • OCEANS '98

  • OCEANS '97

  • OCEANS '96


2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)

2019 IEEE International Conference on Systems, Man, and Cybernetics (SMC2019) will be held in the south of Europe in Bari, one of the most beautiful and historical cities in Italy. The Bari region’s nickname is “Little California” for its nice weather and Bari's cuisine is one of Italian most traditional , based of local seafood and olive oil. SMC2019 is the flagship conference of the IEEE Systems, Man, and Cybernetics Society. It provides an international forum for researchers and practitioners to report up-to-the-minute innovations and developments, summarize state­of-the-art, and exchange ideas and advances in all aspects of systems science and engineering, human machine systems and cybernetics. Advances have importance in the creation of intelligent environments involving technologies interacting with humans to provide an enriching experience, and thereby improve quality of life.


2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

robotics, intelligent systems, automation, mechatronics, micro/nano technologies, AI,


2019 International Conference on Robotics and Automation (ICRA)

Flagship conference of the robotics and automation society, a premiere international venue for international robotics researchers


More Conferences

Periodicals related to Acoustic Navigation

Back to Top

Aerospace and Electronic Systems Magazine, IEEE

The IEEE Aerospace and Electronic Systems Magazine publishes articles concerned with the various aspects of systems for space, air, ocean, or ground environments.


Antennas and Propagation, IEEE Transactions on

Experimental and theoretical advances in antennas including design and development, and in the propagation of electromagnetic waves including scattering, diffraction and interaction with continuous media; and applications pertinent to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques.


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Geoscience and Remote Sensing, IEEE Transactions on

Theory, concepts, and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.


Image Processing, IEEE Transactions on

Signal-processing aspects of image processing, imaging systems, and image scanning, display, and printing. Includes theory, algorithms, and architectures for image coding, filtering, enhancement, restoration, segmentation, and motion estimation; image formation in tomography, radar, sonar, geophysics, astronomy, microscopy, and crystallography; image scanning, digital half-toning and display, andcolor reproduction.


More Periodicals

Most published Xplore authors for Acoustic Navigation

Back to Top

Xplore Articles related to Acoustic Navigation

Back to Top

Man portable acoustic navigation buoys

OCEANS 2016 - Shanghai, 2016

This paper presents a new generation of man portable acoustic navigation buoys. The aim of these buoys is to facilitate the deployment of an underwater acoustic positioning system for the operation of Autonomous Underwater Vehicles. Each buoy includes only the vital modules required for the most typical schemes of underwater acoustic navigation, packed in a small but dynamically stable platform ...


The application of spread spectrum signaling techniques to underwater acoustic navigation

Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV'94), 1995

There are three standard techniques of tracking underwater vehicles; long baseline acoustic navigation, short baseline acoustic navigation, and ultra- short baseline acoustic navigation. All three techniques require accurate detection of a known signal which may be corrupted by additive noise and multipaths. In the particular case of ultra-short baseline navigation, an accurate phase measurement of the signal must be made ...


"Inverted" acoustic navigation system also measurers sound speed at towed vehicle

Proceedings of OCEANS '93, 1993

An "Inverted" acoustic navigation system (AMSNAV) is being developed jointly by Acoustic Marine Systems and Seafloor Surveys International to provide reliable position information for deep towed sonar survey operations. The acoustic navigation signal is also used for accurately determining sound speed at the towed vehicle, eliminating errors caused by sound speed uncertainties when converting the measured phase angles to tow ...


Mooring Motion Monitoring Acoustic Navigation System

OCEANS 81, 1981

A long path, low frequency, acoustic tomography experiment is being conducted in the North Atlantic by members of the Scripps Oceanographic Institute, Massachusettes Institute of Technology and Woods Hole Oceanographic Institution. Long, single-wire moorings are used to mount the necessary instrumentation. A high frequency acoustic navigation system monitors mooring motion to reduce degradation of the acoustic data by this source ...


Acoustic navigation for Arctic under-ice AUV missions

Proceedings of OCEANS '93, 1993

In the Spring of 1994, the dynamical and mechanical behavior of the Artic ice cover was studied from an ice camp deployed in the Beaufort Sea, 2-300 nm north of Prudoe Bay. The periodic measurement of the under-ice topography is a key component of the experiment, and the authors make use of autonomous underwater vehicle (AUV) technology to provide a ...


More Xplore Articles

Educational Resources on Acoustic Navigation

Back to Top

IEEE-USA E-Books

  • Man portable acoustic navigation buoys

    This paper presents a new generation of man portable acoustic navigation buoys. The aim of these buoys is to facilitate the deployment of an underwater acoustic positioning system for the operation of Autonomous Underwater Vehicles. Each buoy includes only the vital modules required for the most typical schemes of underwater acoustic navigation, packed in a small but dynamically stable platform for one day long operations in coastal waters. We will present an overview of the systems hardware and electronics, and also the key features of the deployment and operation of the beacons.

  • The application of spread spectrum signaling techniques to underwater acoustic navigation

    There are three standard techniques of tracking underwater vehicles; long baseline acoustic navigation, short baseline acoustic navigation, and ultra- short baseline acoustic navigation. All three techniques require accurate detection of a known signal which may be corrupted by additive noise and multipaths. In the particular case of ultra-short baseline navigation, an accurate phase measurement of the signal must be made in order to compute the bearing estimate. Significant improvements in the resolution of underwater navigation systems are possible with the use of coded wideband signals, as compared to conventional tone bursts. An ultra-short baseline acoustic tracking system has been developed at Woods Hole Oceanographic Institution based on the use of spread spectrum signaling techniques. Simulations and expressions are presented which demonstrate the application of wideband signaling to the problem of underwater acoustic navigation.

  • "Inverted" acoustic navigation system also measurers sound speed at towed vehicle

    An "Inverted" acoustic navigation system (AMSNAV) is being developed jointly by Acoustic Marine Systems and Seafloor Surveys International to provide reliable position information for deep towed sonar survey operations. The acoustic navigation signal is also used for accurately determining sound speed at the towed vehicle, eliminating errors caused by sound speed uncertainties when converting the measured phase angles to tow vehicle bearing. The measured sound speed also allows for increased sonar data accuracy, especially important for bathymetric mapping.<<ETX>>

  • Mooring Motion Monitoring Acoustic Navigation System

    A long path, low frequency, acoustic tomography experiment is being conducted in the North Atlantic by members of the Scripps Oceanographic Institute, Massachusettes Institute of Technology and Woods Hole Oceanographic Institution. Long, single-wire moorings are used to mount the necessary instrumentation. A high frequency acoustic navigation system monitors mooring motion to reduce degradation of the acoustic data by this source of error. The navigation system consists of a microprocessor controlled transceiver mounted at the top of the mooring and three recoverable transponders anchored on the bottom approximately one water depth away from the mooring anchor. At predetermined intervals, the transceiver simultaneously interrogates the three transponders and measures the round trip travel times. These data are recorded along with the time and date of the measurement on a small, single-track tape recorder. Each transponder is mounted within a self-buoyant glass housing and can be commanded to release for recovery. A 1.25 watt-second flash is also incorporated in the housing to aid in recovery. This paper describes the design of the transceiver and recoverable transponders and gives results from a short-term development.

  • Acoustic navigation for Arctic under-ice AUV missions

    In the Spring of 1994, the dynamical and mechanical behavior of the Artic ice cover was studied from an ice camp deployed in the Beaufort Sea, 2-300 nm north of Prudoe Bay. The periodic measurement of the under-ice topography is a key component of the experiment, and the authors make use of autonomous underwater vehicle (AUV) technology to provide a cost effective alternative to the use of nuclear submarines. As a proof of concept, the AUV Odyssey was used to obtain ice-topographic data from areas located up to 10 km from the base camp. Accurate and reliable navigation is crucial to successful completion of the mission and recovery of the vehicle. The planned mission is described together with the associated requirements for vehicle technology, with particular emphasis on the development of a robust, very long baseline acoustic navigation system.<<ETX>>

  • Underwater Acoustic Navigation Using a Beacon With a Spiral Wave Front

    In this paper, a method for performing underwater acoustic navigation using a spiral wave-front beacon is examined. A transducer designed to emit a signal whose phase changes by 360° in one revolution can be used in conjunction with a reference signal to determine the aspect of a remote receiver relative to the beacon. Experiments are conducted comparing spiral wave-front beacon navigation to Global Positioning System (GPS) onboard an unmanned surface vehicle. The advantages and disadvantages of several outgoing signals and processing techniques are compared. The most successful technique involves the use of a phased array projector utilizing a broadband signal. Aspect is determined by using a weighted mean over frequencies. Sources of error for each of the techniques are also examined.

  • Performance analysis of deep ocean acoustic navigation systems

    Two distinct acoustic methods are used to provide precise navigation at sea over areas of approximately 100 km<sup>2</sup>. Both methods position via acoustic transmission from a set of moored transponders or beacons. When the elements of the reference net are operated in a transpond mode the system is called a pulse positioning system; when operated in a continuous mode the system is known as a Doppler system. A combined navigation scheme 'which capitalizes on the attributes of both the pulse and Doppler modes is under development. It will be capable ultimately of positioning a platform with respect to the reference net with an error of 1 to 2 meters, and of repositioning a platform within 10 cm of a previous fix in 5 km depth water. In this paper we present a performance analysis of the pulse-Doppler system in which we consider the the characteristics of the system receivers in detecting pulse and Doppler information. Factors affecting performance such as signal level, receiver bandwidth, ambient sea noise and platform motion are discussed. Comparisons are made between optimum and typical performance.

  • Underwater Acoustic Navigation with the WHOI Micro-Modem

    The WHOI Micro-Modem is a compact, low-power acoustic transceiver that can provide both acoustic telemetry and navigation. Its size and versatility make it ideal for integration in autonomous underwater vehicles (AUVs). The modem supports the use of both broadband and narrowband transponders for long baseline navigation systems, has a modem-to-modem ranging capability, and can be configured to provide synchronous oneway ranging, when integrated with a precision clock. This paper gives an overview of the different navigation systems supported by the Micromodem and presents the results from field tests conducted on the SeaBED AUV in deployments in Greece, the Bluefin AUV, and whale localizations in the Stellwagen Bank Marine Sanctuary

  • Acoustic navigation of intramyocardial injection needle catheter using color doppler echocardiography

    Background: Drug or stem cell intramyocardial delivery has been tested using transendocardial injections navigated by fluoroscopy and NOGA electromechanical mapping system. However, the exact location of the needle tip and the injection depth within the myocardium are difficult to determine due to limitations in depicting cardiac anatomy, and muscle thickness in particular, with fluoroscopy or NOGA. The objective was to develop a prototype of an intramyocardial injection catheter that allows visual localization of the injection needle tip in the myocardium under the guidance of conventional 2D color Doppler echocardiography. Methods: An acoustically active catheter (AAC)with a retractable injection needle was constructed using a commercially available steerable sheath and piezoelectric crystals. The navigation and myocardial injection were tested in a beating heart in animal experiments. Crystals on the AAC tip and needle tip were driven by a waveform generator and produced acoustic interactions with Doppler beam. The interaction resulted in realtime color markers in echocardiography scans. Results: In all cases, both AAC catheter tip and inserted needle tip in the myocardium were visualized clearly. Green color dye was injected through the needle lumen and successful formation of a dye deposit was observed at autopsy in 15 of 20 attempts. Conclusion: The concept of acoustically active navigation of the injection needle in a beating heart is presented. Guiding the injection needle within the left ventricular myocardium has potential to provide safer intramyocardial therapeutic delivery, utilizing a conventionally available echocardiography system.

  • Preliminary deep water results in single-beacon one-way-travel-time acoustic navigation for underwater vehicles

    This paper reports the development and experimental evaluation of a novel navigation system for underwater vehicles that employs Doppler sonar, synchronous clocks, and acoustic modems to achieve simultaneous acoustic communication and navigation. The system reported herein, which is employed to renavigate the vehicle in post-processing, forms the basis for a vehicle-based real-time navigation system. Existing high-precision absolute navigation techniques for underwater vehicles are impractical over long length scales and lack scalability for simultaneously navigating multiple vehicles. The navigation method reported in this paper relies on a single moving reference beacon, eliminating the requirement for the underwater vehicle to remain in a bounded navigable area. The use of underwater modems and synchronous clocks enables range measurements based on one-way time-of-flight information from acoustic data packet broadcasts. The acoustic data packets are broadcast from the single, moving reference beacon and can be received simultaneously by multiple vehicles within acoustic range. We report experimental results from the first deep-water evaluation of this method using data collected from an autonomous underwater vehicle (AUV) survey carried out in 4000 m of water on the southern Mid-Atlantic Ridge. We report a comparative experimental evaluation of the navigation fixes provided by the proposed synchronous acoustic navigation system in comparison to navigation fixes obtained by an independent conventional long baseline acoustic navigation system.



Standards related to Acoustic Navigation

Back to Top

No standards are currently tagged "Acoustic Navigation"


Jobs related to Acoustic Navigation

Back to Top