MIMO

View this topic in
In radio, multiple-input and multiple-output, or MIMO (commonly pronounced my-moh or me-moh), is the use of multiple antennas at both the transmitter and receiver to improve communication performance. It is one of several forms of smart antenna technology. (Wikipedia.org)






Conferences related to MIMO

Back to Top

2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

For its 20th year edition, the IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 2019, returns to the country that saw its birth, France. Held in Cannes, in the heart of the world renown “French Riviera” (Cote d’Azur in French), the SPAWC 2019 will exhibit a technical program complete with high profile plenaries, invited and contributed papers, all appearing under IEEE explore. A flagship workshop of the IEEE SP Society SPCOM technical committee, SPAWC 2019 will combine cutting edge research in the fields of signal processing, statistical learning, communication theory, wireless networking and more, together with an exciting social program on the glamorous and sunny Riviera.


2019 IEEE 58th Conference on Decision and Control (CDC)

The CDC is recognized as the premier scientific and engineering conference dedicated to the advancement of the theory and practice of systems and control. The CDC annually brings together an international community of researchers and practitioners in the field of automatic control to discuss new research results, perspectives on future developments, and innovative applications relevant to decision making, systems and control, and related areas.The 58th CDC will feature contributed and invited papers, as well as workshops and may include tutorial sessions.The IEEE CDC is hosted by the IEEE Control Systems Society (CSS) in cooperation with the Society for Industrial and Applied Mathematics (SIAM), the Institute for Operations Research and the Management Sciences (INFORMS), the Japanese Society for Instrument and Control Engineers (SICE), and the European Union Control Association (EUCA).


2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting

The conference is intended to provide an international forum for the exchange of information on state-of-the-art research in antennas, propagation, electromagnetics, and radio science.


2019 IEEE International Symposium on Information Theory (ISIT)

Information theory and coding theory and their applications in communications and storage, data compression, wireless communications and networks, cryptography and security, information theory and statistics, detection and estimation, signal processing, big data analytics, pattern recognition and learning, compressive sensing and sparsity, complexity and computation theory, Shannon theory, quantum information and coding theory, emerging applications of information theory, information theory in biology.


2019 IEEE/MTT-S International Microwave Symposium - IMS 2019

Comprehensive symposium on microwave theory and techniques including active and passive circuit components, theory and microwave systems.

  • 2029 IEEE/MTT-S International Microwave Symposium - IMS 2029

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2021 IEEE/MTT-S International Microwave Symposium - IMS 2021

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.

  • 2018 IEEE/MTT-S International Microwave Symposium - IMS 2018

    Microwave theory and techniques, RF/microwave/millimeter-wave/terahertz circuit design and fabrication technology, radio/wireless communication.

  • 2017 IEEE/MTT-S International Microwave Symposium - IMS 2017

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.

  • 2016 IEEE/MTT-S International Microwave Symposium - IMS 2016

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2015 IEEE/MTT-S International Microwave Symposium - MTT 2015

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics. The IMS includes technical sessions, both oral and interactive, worksh

  • 2014 IEEE/MTT-S International Microwave Symposium - MTT 2014

    IMS2014 will cover developments in microwave technology from nano devices to system applications. Technical paper sessions, interactive forums, plenary and panel sessions, workshops, short courses, industrial exhibits, and a wide array of other technical activities will be offered.

  • 2013 IEEE/MTT-S International Microwave Symposium - MTT 2013

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter -wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2012 IEEE/MTT-S International Microwave Symposium - MTT 2012

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2011 IEEE/MTT-S International Microwave Symposium - MTT 2011

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010

    Reports of research and development at the state-of-the-art of the theory and techniques related to the technology and applications of devices, components, circuits, modules and systems in the RF, microwave, millimeter-wave, submillimeter-wave and Terahertz ranges of the electromagnetic spectrum.

  • 2009 IEEE/MTT-S International Microwave Symposium - MTT 2009

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2008 IEEE/MTT-S International Microwave Symposium - MTT 2008

  • 2007 IEEE/MTT-S International Microwave Symposium - MTT 2007

  • 2006 IEEE/MTT-S International Microwave Symposium - MTT 2006


More Conferences

Periodicals related to MIMO

Back to Top

Aerospace and Electronic Systems Magazine, IEEE

The IEEE Aerospace and Electronic Systems Magazine publishes articles concerned with the various aspects of systems for space, air, ocean, or ground environments.


Antennas and Propagation, IEEE Transactions on

Experimental and theoretical advances in antennas including design and development, and in the propagation of electromagnetic waves including scattering, diffraction and interaction with continuous media; and applications pertinent to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques.


Antennas and Wireless Propagation Letters, IEEE

IEEE Antennas and Wireless Propagation Letters (AWP Letters) will be devoted to the rapid electronic publication of short manuscripts in the technical areas of Antennas and Wireless Propagation.


Automatic Control, IEEE Transactions on

The theory, design and application of Control Systems. It shall encompass components, and the integration of these components, as are necessary for the construction of such systems. The word `systems' as used herein shall be interpreted to include physical, biological, organizational and other entities and combinations thereof, which can be represented through a mathematical symbolism. The Field of Interest: shall ...


Communications Letters, IEEE

Covers topics in the scope of IEEE Transactions on Communications but in the form of very brief publication (maximum of 6column lengths, including all diagrams and tables.)


More Periodicals


Xplore Articles related to MIMO

Back to Top

Direct Localization for Massive MIMO

IEEE Transactions on Signal Processing, 2017

Large-scale MIMO systems are well known for their advantages in communications, but they also have the potential for providing very accurate localization, thanks to their high angular resolution. A difficult problem arising indoors and outdoors is localizing users over multipath channels. Localization based on angle of arrival (AOA) generally involves a two-step procedure, where signals are first processed to obtain ...


Reducing interference of Gaussian MIMO Z channel and Gaussian MIMO X Channel

2016 IEEE International Conference on Engineering and Technology (ICETECH), 2016

In MIMO X channel (XC) there are two multiple transmitter and receivers antenna pairs, where every transmitters communicate to every receivers. The MIMO Z channel (ZC) [1] is the special case of MIMO X channel [1] that is obtained by elimination of one link and message corresponding to it. MIMO Z has been derived and then compare to existing system. ...


On the Performance of MIMO-NOMA-Based Visible Light Communication Systems

IEEE Photonics Technology Letters, 2018

In this letter, we apply the non-orthogonal multiple access (NOMA) technique to improve the achievable sum rate of multiple-input multiple-output (MIMO)-based multi-user visible light communication (VLC) systems. To ensure efficient and low-complexity power allocation in indoor MIMO-NOMA-based VLC systems, a normalized gain difference power allocation (NGDPA) method is first proposed by exploiting users' channel conditions. We investigate the performance of ...


Performance Evaluation of the Detection Algorithms for MIMO Spatial Multiplexing Based on Analytical Wireless MIMO Channel Models

2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), 2018

This paper addresses the experimental numerical simulation of the detection algorithms for MIMO spatial multiplexing based on experimental analytical MIMO channel modeling. The suboptimal ZF and MMSE detection algorithms for MIMO spatial multiplexing are described. The effect of spatial correlation between MIMO channel coefficients results in channel capacity degradation and affects on bit error rate performance. The channel correlation matrices ...


MIMO multiantenna systems radiopropagation aspects

2014 IEEE Colombian Conference on Communications and Computing (COLCOM), 2014

This paper takes a brief description of a series of radio propagation simulation of MIMO (Multiple Input Multiple Output) multiantenna systems in the areas of La Candelaria and La Castellana in Bogota DC (Colombia), using specialized software ICS Designer and digital high resolution cartography. A comparison between the types of multiantenna systems MU-MIMO (Multi User MIMO), SU-MIMO-SD (Single User MIMO ...


More Xplore Articles

Educational Resources on MIMO

Back to Top

IEEE.tv Videos

IMS 2014: MIMO and Beamforming Solutions for 5G Technology
Brooklyn 5G - 2015 - Andreas F. Molisch - Channel Measurements for Massive MIMO
Massive MIMO Active Antenna Arrays for Advanced Wireless Communications: IEEE CAS lecture by Dr. Mihai Banu
2011 IEEE Awards Alexander Graham Bell Medal - Arogyaswami J. Paulraj
Panel 2: Bringing Massive MIMO to reality - Brooklyn 5G - 2015
Brooklyn 5G - 2015 - Mr. Mikael Hook - Bringing Massive MIMO to Reality
Massive MIMO for the New Radio - Fred Vook: Brooklyn 5G Summit 2017
HDAAS: An Efficient Massive-MIMO Technology - Mihai Banu: Brooklyn 5G Summit 2017
Brooklyn 5G Summit: Realizing Massive MIMO in LTE-Advanced and 5G
Prototyping MIMO Systems with the AD9361: MicroApps 2015 - Analog Devices
Brooklyn 5G - 2015 - Robert W. Heath Jr. - Comparing Massive MIMO at Sub-6 GHz and Millimeter Wave
Panel 5: Challenges for millimeter wave MIMO in CMOS technology - Brooklyn 5G - 2015
Massive MIMO at 60 GHz vs. 2 GHz - Eric Larsson: Brooklyn 5G Summit 2017
Millimeter Wave MIMO: A Signal Processing Perspective
Brooklyn 5G Summit: RFIC Technology for Massive MIMO and Beamforming Panel
Brooklyn 5G Summit: Bringing Massive MIMO to Reality Panel
Massive MIMO for 5G and Beyond - SaiDhiraj Amuru - India Mobile Congress, 2018
How Will Record-Setting Spectral Efficiency Impact Real 5G Systems? - Panel from NIWeek 5G Summit
Brooklyn 5G - 2015 - Charlie Zhang - Realizing Massive MIMO in LTE-Advanced and 5G
Panel 4: Realizing Massive MIMO in LTE-Advanced and 5GBrooklyn 5G - 2015

IEEE-USA E-Books

  • Direct Localization for Massive MIMO

    Large-scale MIMO systems are well known for their advantages in communications, but they also have the potential for providing very accurate localization, thanks to their high angular resolution. A difficult problem arising indoors and outdoors is localizing users over multipath channels. Localization based on angle of arrival (AOA) generally involves a two-step procedure, where signals are first processed to obtain a user's AOA at different base stations, followed by triangulation to determine the user's position. In the presence of multipath, the performance of these methods is greatly degraded due to the inability to correctly detect and/or estimate the AOA of the line-of-sight (LOS) paths. To counter the limitations of this two- step procedure which is inherently suboptimal, we propose a direct localization approach in which the position of a user is localized by jointly processing the observations obtained at distributed massive MIMO base stations. Our approach is based on a novel compressed sensing framework that exploits channel properties to distinguish LOS from non-LOS signal paths, and leads to improved performance results compared to previous existing methods.

  • Reducing interference of Gaussian MIMO Z channel and Gaussian MIMO X Channel

    In MIMO X channel (XC) there are two multiple transmitter and receivers antenna pairs, where every transmitters communicate to every receivers. The MIMO Z channel (ZC) [1] is the special case of MIMO X channel [1] that is obtained by elimination of one link and message corresponding to it. MIMO Z has been derived and then compare to existing system. After MIMO X channel will be derived and then propose the new upper bound for MIMO ZC. Next we will consider worst noise covariance at receiver to derive another upper bound called MIMO MAC. After utilization of the MIMO MAC Channel we calculate better upper bound by utilization of tighter sum rate named Turbo MIMO X Channel. Finally, we use Turbo MIMO X equations. These numerical equations give the better proposed upper bounds of sum rate capacity which is tighter than existing bounds.

  • On the Performance of MIMO-NOMA-Based Visible Light Communication Systems

    In this letter, we apply the non-orthogonal multiple access (NOMA) technique to improve the achievable sum rate of multiple-input multiple-output (MIMO)-based multi-user visible light communication (VLC) systems. To ensure efficient and low-complexity power allocation in indoor MIMO-NOMA-based VLC systems, a normalized gain difference power allocation (NGDPA) method is first proposed by exploiting users' channel conditions. We investigate the performance of an indoor 2×2 MIMO-NOMA-based multi-user VLC system through numerical simulations. The obtained results show that the achievable sum rate of the 2×2 MIMO-VLC system can be significantly improved by employing NOMA with the proposed NGDPA method. It is demonstrated that NOMA with NGDPA achieves a sum rate improvement of up to 29.1% compared with NOMA with the gain ratio power allocation method in the 2 × 2 MIMO-VLC system with three users.

  • Performance Evaluation of the Detection Algorithms for MIMO Spatial Multiplexing Based on Analytical Wireless MIMO Channel Models

    This paper addresses the experimental numerical simulation of the detection algorithms for MIMO spatial multiplexing based on experimental analytical MIMO channel modeling. The suboptimal ZF and MMSE detection algorithms for MIMO spatial multiplexing are described. The effect of spatial correlation between MIMO channel coefficients results in channel capacity degradation and affects on bit error rate performance. The channel correlation matrices calculated from the measured channel coefficients are used as parameters for analytical MIMO channel models. Numerical simulation demonstrated that spatial correlation has a significant effect on BER performance of the ZF and MMSE detection algorithms. CDF of minimum and maximum eigenvalues of equivalent channel matrix are presented which have the close connection with the performance of the ZF and MMSE detection algorithms.

  • MIMO multiantenna systems radiopropagation aspects

    This paper takes a brief description of a series of radio propagation simulation of MIMO (Multiple Input Multiple Output) multiantenna systems in the areas of La Candelaria and La Castellana in Bogota DC (Colombia), using specialized software ICS Designer and digital high resolution cartography. A comparison between the types of multiantenna systems MU-MIMO (Multi User MIMO), SU-MIMO-SD (Single User MIMO Spatial Diversity), SU-MIMO-SM (Single User MIMO Spatial Multiplexing) and standard antennas is performed. The results allow to characterize these considerations have multiantenna systems used by the LTE (Long Term Evolution) technology adopted in Colombia by operators such as mobile telecommunications system fourth generation (4G).

  • Compact eight MIMO antennas for 5G smartphones and their MIMO capacity verification

    The handset or smartphone antenna has evolved from the external antenna before the year 2000 to the internal antenna and casing-integrated antenna for 2G/3G/4G communications till now. For the fifth-generation (5G) communications, it is expected that the Massive MIMO system is very promising for applications and a large number of MIMO antennas will be attractive to be deployed in the smartphone to effectively increase the channel capacity. In this paper, promising compact eight MIMO antennas in the smartphone are presented. The MIMO antennas are operated in the 3.5-GHz band (3400~3600 MHz), which has been recently identified in WRC-15 for global mobile broadband services in the future. The achievable MIMO channel capacities for the proposed compact eight MIMO antennas are calculated and verified by MIMO OTA (over-the-air) testing in the open space. Results are presented and discussed.

  • Coexistence of MIMO Radar and FD MIMO Cellular Systems With QoS Considerations

    In this paper, the feasibility of spectrum sharing between a multiple-input multiple-output (MIMO) radar system (RS) and a MIMO cellular system (CS), comprising of a full-duplex (FD) base station (BS) serving multiple downlink and uplink users at the same time and frequency is investigated. While a joint transceiver design technique at the CS's BS and users is proposed to maximize the probability of detection (PoD) of the MIMO RS, subject to constraints of quality of service (QoS) of users and transmit power at the CS, null-space based waveform projection is used to mitigate the interference from RS toward CS. In particular, the proposed technique optimizes the performance of PoD of RS by maximising its lower bound, which is obtained by exploiting the monotonically increasing relationship of PoD and its non-centrality parameter. The numerical results show the utility of the proposed spectrum sharing framework, but with certain tradeoffs in performance corresponding to RS's transmit power, RS's PoD, CS's residual self-interference power at the FDBS and QoS of users.

  • On the Sum-Rate of the Gaussian MIMO Z Channel and the Gaussian MIMO X Channel

    In this paper, we study the Gaussian MIMO Z channel and the Gaussian MIMO X channel. The MIMO X channel (XC) consists of two multiple antenna transmit- receive pairs, where each transmitter communicates with both receivers. The MIMO Z channel (ZC) is obtained from the MIMO X channel by eliminating one of the links and its corresponding message. First, we derive a sum-rate upper bound for the MIMO Z channel and compare it with an existing bound in literature. Next, we consider the MIMO X channel and propose a new sum-rate upper bound by utilizing the sum-rate upper bound for the MIMO ZC. Subsequently, we derive another upper bound for the MIMO XC by assuming receiver cooperation and deriving the worst noise covariance matrix for the resulting two-user MAC. We compare the above two upper bounds for the MIMO XC with the MaddahAli-Motahari-Khandani (MMK) scheme. Then, we consider some consequences of the above results for the MIMO interference channel. Finally, we present some numerical results. The numerical results suggest that the proposed sum-rate capacity upper bounds are tighter than existing bounds.

  • Multiplexing index and MIMO band index: Two novel metrics for MIMO antenna evaluation

    The paper presents two new figures of merit that efficiently evaluate the performance of a MIMO terminal, namely the spatial multiplexing index (SMI) and the MIMO band index (MBI). Both metrics incorporate the impact of the antenna efficiency, efficiency imbalance and the spatial correlation of the antenna terminal into its spatial multiplexing performance. The SMI is introduced as a “green” index that expresses the minimum SNR required by the MIMO terminal in order to support spatial multiplexing. The MBI metric completes the picture regarding the MIMO antenna characterization by taking into account the wideband performance of the antenna-under-test and thus is particularly useful for antenna engineers whose goal is to achieve the optimum MIMO antenna system design over a desired frequency band.

  • Near-Capacity Wireless Transceivers and Cooperative Communications in the MIMO Era: Evolution of Standards, Waveform Design, and Future Perspectives

    Classic Shannon theory suggests that the achievable channel capacity increases logarithmically with the transmit power. By contrast, the MIMO capacity increases linearly with the number of transmit antennas, provided that the number of receive antennas is equal to the number of transmit antennas. With the further proviso that the total transmit power is increased proportionately to the number of transmit antennas, a linear capacity increase is achieved upon increasing the transmit power, which justifies the spectacular success of MIMOs. Hence we may argue that MIMO-aided transceivers and their cooperation- assisted distributed or virtual MIMO counterparts constitute power-efficient solutions. In a nutshell, since the conception of GSM in excess of three orders of magnitude bit-rate improvements were achieved in three decades, which corresponds to about a factor ten for each decade, because GSM had a data rate of 9.6 Kb/s, while HSDPA is capable of communicating at 13.7 Mb/s. However, the possible transmit power reductions remained more limited, even when using the most advanced multistage iterative detectors, since the required received signal power has not been reduced by as much as 30 dB. This plausible observation motivates the further research of advanced cooperation- aided wireless MIMO transceivers, as detailed in this treatise.



Standards related to MIMO

Back to Top

No standards are currently tagged "MIMO"