Conferences related to Systems Neuroscience

Back to Top

2023 Annual International Conference of the IEEE Engineering in Medicine & Biology Conference (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invitedsessions of the latest significant findings and developments in all the major fields of biomedical engineering.Submitted full papers will be peer reviewed. Accepted high quality papers will be presented in oral and poster sessions,will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE.


2020 59th IEEE Conference on Decision and Control (CDC)

The CDC is the premier conference dedicated to the advancement of the theory and practice of systems and control. The CDC annually brings together an international community of researchers and practitioners in the field of automatic control to discuss new research results, perspectives on future developments, and innovative applications relevant to decision making, automatic control, and related areas.


2020 IEEE International Conference on Robotics and Automation (ICRA)

The International Conference on Robotics and Automation (ICRA) is the IEEE Robotics and Automation Society’s biggest conference and one of the leading international forums for robotics researchers to present their work.


2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)

The 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2020) will be held in Metro Toronto Convention Centre (MTCC), Toronto, Ontario, Canada. SMC 2020 is the flagship conference of the IEEE Systems, Man, and Cybernetics Society. It provides an international forum for researchers and practitioners to report most recent innovations and developments, summarize state-of-the-art, and exchange ideas and advances in all aspects of systems science and engineering, human machine systems, and cybernetics. Advances in these fields have increasing importance in the creation of intelligent environments involving technologies interacting with humans to provide an enriching experience and thereby improve quality of life. Papers related to the conference theme are solicited, including theories, methodologies, and emerging applications. Contributions to theory and practice, including but not limited to the following technical areas, are invited.


2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)

All areas of ionizing radiation detection - detectors, signal processing, analysis of results, PET development, PET results, medical imaging using ionizing radiation


More Conferences

Periodicals related to Systems Neuroscience

Back to Top

Applied Superconductivity, IEEE Transactions on

Contains articles on the applications and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Power applications include magnet design as well asmotors, generators, and power transmission


Audio, Speech, and Language Processing, IEEE Transactions on

Speech analysis, synthesis, coding speech recognition, speaker recognition, language modeling, speech production and perception, speech enhancement. In audio, transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. (8) (IEEE Guide for Authors) The scope for the proposed transactions includes SPEECH PROCESSING - Transmission and storage of Speech signals; speech coding; speech enhancement and noise reduction; ...


Automatic Control, IEEE Transactions on

The theory, design and application of Control Systems. It shall encompass components, and the integration of these components, as are necessary for the construction of such systems. The word `systems' as used herein shall be interpreted to include physical, biological, organizational and other entities and combinations thereof, which can be represented through a mathematical symbolism. The Field of Interest: shall ...


Biomedical Circuits and Systems, IEEE Transactions on

The Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems ...


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


More Periodicals

Most published Xplore authors for Systems Neuroscience

Back to Top

Xplore Articles related to Systems Neuroscience

Back to Top

Investigating the Coupling between Stimulation and Neural Activity: a Dynamic Modeling Approach

2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007

The objective of the present study was to build a dynamic model relating changes in neural responses in rat barrel cortex to an electrical whisker stimulation pulse train of varying frequencies. This work is part of a formal mathematical system currently being developed (e.g. [1] and [2]), which links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance ...


Paired chirp evoked cortical inhibition and its behavioral correlates in a speech intelligibility task

2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), 2013

Successful auditory stream segregation depends on correctly inhibiting irrelevant stimuli being perceived in parallel with relevant information. Here, we analyze the behavioral correlates of inhibitory processing in healthy subjects, by first calculating the percentage of inhibition elicited through a paired-chirp auditory stimulation paradigm and then analyzing its correlation to the score in a speech intelligibility task. Analysis of cortical inhibition ...


Motion reduction and multidimensional denoising in Voltage-sensitive Dye imaging

2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015

Optical Imaging using Voltage-sensitive Dyes is characterized by low fractional changes in fluorescent light intensity upon the application of a stimulus, which leads to slight value differences between pixels on an in- general noisy image sequence. The application of an anisotropic diffusion filtering scheme, in order to contribute to the denoising of the optical images, is proposed as one option ...


A Dynamic Causal Model of the Coupling Between Pulse Stimulation and Neural Activity

Neural Computation, 2009

We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time ...


Japanese SRPBS for BMI research: Decoded neurofeedback as a causal tool in systems neuroscience

2013 International Winter Workshop on Brain-Computer Interface (BCI), 2013

Summary form only given. Japanese MEXT started SRPBS (strategic research for promotion of brain sciences) in 2008. Field A was on BMI and I am the leader of this. I will describe achievement within this large group funding. Within ATR, we have developed next generation noninvasive decoding method as well as decoded neurofeedback method.


More Xplore Articles

Educational Resources on Systems Neuroscience

Back to Top

IEEE-USA E-Books

  • Investigating the Coupling between Stimulation and Neural Activity: a Dynamic Modeling Approach

    The objective of the present study was to build a dynamic model relating changes in neural responses in rat barrel cortex to an electrical whisker stimulation pulse train of varying frequencies. This work is part of a formal mathematical system currently being developed (e.g. [1] and [2]), which links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal. Neural responses were measured in terms of local field potentials, which were then converted into current source density (CSD) data. Responses were found to be strongly suppressed immediately following the first stimulus pulse, before recovering to a steady state, which was maintained throughout the rest of the stimulation. The amplitude of this steady state decreases as the stimulation frequency increases, as shown in [3]-[6]. The model structure is based on the physiological pathway from the rat sensory organ to the cortex. Dynamic linear second order systems are used to model the excitatory as well as the suppressive components of the neural response. The interactions between components contain nonlinear modulations. The model was evaluated against CSD data from experiments with varying stimulation frequency (1-40 Hz), and shows a plausible fit. The model parameters obtained by optimization for different physiological conditions (anaesthetized or awake) were significantly different. Although this is a descriptive model, it may well have some physiological implications.

  • Paired chirp evoked cortical inhibition and its behavioral correlates in a speech intelligibility task

    Successful auditory stream segregation depends on correctly inhibiting irrelevant stimuli being perceived in parallel with relevant information. Here, we analyze the behavioral correlates of inhibitory processing in healthy subjects, by first calculating the percentage of inhibition elicited through a paired-chirp auditory stimulation paradigm and then analyzing its correlation to the score in a speech intelligibility task. Analysis of cortical inhibition was made both in amplitude and phase, focusing on the N1-P2 complex. Significant inhibition between the condition and the test chirp in both of the inter stimulus intervals (ISIs) used and both N1 and P2 waves was observed. Inhibition in phase synchronization stability (PSS) showed a positive correlation to scores obtained in the task for all given modalities of the study, while amplitude analysis showed a correlation for the N1 wave with 500 ms ISI only. It was shown that the PSS analysis provides a more reliable representation of cortical inhibition, able to correlate to the attentional task. It is concluded that the given paradigm allows to assess inhibitory processing, vital to the allocation of attention.

  • Motion reduction and multidimensional denoising in Voltage-sensitive Dye imaging

    Optical Imaging using Voltage-sensitive Dyes is characterized by low fractional changes in fluorescent light intensity upon the application of a stimulus, which leads to slight value differences between pixels on an in- general noisy image sequence. The application of an anisotropic diffusion filtering scheme, in order to contribute to the denoising of the optical images, is proposed as one option to improve its quality and for a better understanding of the physiological processes they represent. We apply an image registration approach to compensate for motion artifacts, such that we do not need to mount a fixed cranial chamber onto the skull. In this work, electrical stimulation to the tibial nerve in a rat model was used to register evoke potentials, imaging the somatosensory cortex of the animal, which was previously stained with the RH1691 dye.

  • A Dynamic Causal Model of the Coupling Between Pulse Stimulation and Neural Activity

    We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price (2000), this work is part of a formal mathematical system currently being developed (Zheng et al.,2005) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.

  • Japanese SRPBS for BMI research: Decoded neurofeedback as a causal tool in systems neuroscience

    Summary form only given. Japanese MEXT started SRPBS (strategic research for promotion of brain sciences) in 2008. Field A was on BMI and I am the leader of this. I will describe achievement within this large group funding. Within ATR, we have developed next generation noninvasive decoding method as well as decoded neurofeedback method.

  • Thalamic gamma band desynchronization in a computational model of the auditory pathway

    Recent studies have focused on modeling the response of the early auditory processing stages to sound stimuli. However, the influence of sound on the higher stages like the auditory thalamus are not well identified. To understand how different sound stimuli affect the response of neurons in these higher stages, it is necessary to model the auditory pathway from the auditory nerve (AN) through the different stages up to the cortex. In this article we present a model of one of the paths through which sound travels from the AN to the cortex. The model presented is a compound of several sub models of different stages of the auditory pathway which offers a detailed resolution due to the subsequent simulation of processing stages. We consider neurons from the AN, the dorsal cochlear nucleus (DCN), the thalamus (specific and non-specific thalamic cells and reticular nucleus) and cortical columns simulating attended and unattended conditions. We use pure tone stimuli with different frequencies as an input and analyze the power spectra of the thalamic and cortical neurons. The main difference in the power spectra can be seen in the specific thalamic cells (STC), where a clear loss of power in the gamma band of the neurons responsible for processing the sound input occurred.

  • Investigating the BOLD spectral power of the intrinsic connectivity networks in fibromyalgia patients: A resting-state fMRI study

    Recent advances in multivariate statistical analysis of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) have provided novel insights into the network organization of the human brain. Here, we applied group independent component analysis, a well-established approach for detecting brain intrinsic connectivity networks, to examine the spontaneous BOLD fluctuations in patients with fibromyalgia and healthy controls before and after exposure to a stressor. The BOLD spectral power characteristics of component time courses were calculated using the fast Fourier transform (FFT) algorithm, and group comparison was performed at six frequency bins between 0 and 0.24 Hz at 0.04 Hz intervals. Relative to controls, patients with fibromyalgia displayed significant BOLD spectral power differences in the default-mode, salience, and subcortical networks at the baseline level (PBon ferroni-corrected<; 0.05). Multivariate analysis of covariance (MANCOVA) further revealed significant effects of the cold water temperature, and pain rating on the spectral power of the sensorimotor, salience, and prefrontal networks, while the diagnosis of fibromyalgia influenced the BOLD spectral power of the salience and subcortical networks (PFDR-corrected<; 0.05). Since the BOLD spectral power reflects the degree of fluctuations within a network, future studies of the correlation between BOLD spectral power and pain processing can cast additional light on the nature of the central nervous system dysfunction in patients with chronic pain syndromes.

  • Extraction of listening effort correlates in the oscillatory EEG activity: Investigation of different hearing aid configurations

    A generally accepted objective measure for listening effort in hearing aid fitting procedures is still missing. Thus, the focus of our research is the extraction of possible neural correlates of listening effort by using electroencephalographic data. Such an objective measure could optimize the hearing aid fitting procedures by reducing the listening effort in hearing aid wearers. In the current study, we tested different hearing aid configurations in 15 normal hearing persons. For this, we created a realistic listening situation using standardized sentences embedded in multitalker babble noise at a fixed signal to noise ratio. The main objectives were (i) to extract possible neural correlates of listening effort using the previously proposed angular entropy measure; (ii) to find the respective electrode locations and scales (frequencies) which best represent the subjectively rated listening effort. In order to decompose the multiway data (electrode channel × number of sentences × scales) the parallel factor analysis (PARAFAC) was applied to the ANOVA F-test values. The results indicate that the refined angular entropy could serve as a possible correlate of listening effort in frontal electrode locations in the frequency range of the EEG theta band. Anyway further research is necessary to validate these findings.

  • Cold Water Pressor Test Differentially Modulates Functional Network Connectivity in Fibromyalgia Patients Compared with Healthy Controls

    Fibromyalgia is a multifaceted chronic pain condition of unknown etiology. Conditioned pain modulation (CPM) such as cold water pressor test of the foot, is widely documented as being disrupted in patients with fibromyalgia. To date, the mechanisms underlying such dysregulation of the descending control of pain in fibromyalgia remain poorly understood. In this study, we used ICA- based network analysis to comprehensively compare differences in functional network connectivity among relevant (nonartifactual) intrinsic connectivity brain networks during the resting state before and after cold pressor test in patients with fibromyalgia and healthy controls. The results revealed significant differences in functional connectivity between the two groups that included the networks that integrate cognitive control and attention systems with memory, emotion and brainstem regions. Specifically, functional connectivity involving central executive network was absent in patients with fibromyalgia compared with controls. Patients showed significant functional connectivity changes involving subcortical and brainstem networks with the sensorimotor and dorsal attention networks. Accordingly, aberrant CPM in patients with fibromyalgia may be due to the differences in functional connectivity involving the subcortical/brainstem regions, and is facilitated by the recruitment of the dorsal attention network in lieu of the central executive network. Future research replicating the present findings with larger sample size can shed more light on neurobiology of endogenous pain modulation in fibromyalgia.

  • Lagrangian Motion Magnification revisited: Continuous, Magnitude Driven Motion Scaling for Psychophysiological Experiments

    Video motion magnification forms a relatively novel family of visualization techniques, that aim to magnify imperceivably small motions in videos. The most prominent techniques are based on Eulerian video processing and local phase shifting, which modify pixel time courses, rather than relying on explicit motion estimation.In this work, we show that under ideal conditions in the context of psychophysiological experiments, a Lagrangian motion magnification approach based on dense optical flow estimation, can be superior to Eulerian motion magnification strategies. We present a novel, continuous and motion magnitude driven forward warping scheme of small motions, which implements motion compensation and magnification into a single motion estimation step. Our approach does not rely on temporal filtering and works in the presence of large motion. It does not require the explicit identification of fast moving objects and more generally no segmentation and or matting in the image domain is necessary. We apply our method to the visualization of blinking related modulations in micro-saccadic eye movements ((i.a.. iridodonesis), pupil dilation (hippus) and micro-expression analysis.



Standards related to Systems Neuroscience

Back to Top

No standards are currently tagged "Systems Neuroscience"


Jobs related to Systems Neuroscience

Back to Top