Conferences related to Neurology

Back to Top

2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invitedsessions of the latest significant findings and developments in all the major fields of biomedical engineering.Submitted papers will be peer reviewed. Accepted high quality papers will be presented in oral and postersessions, will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE


2020 59th IEEE Conference on Decision and Control (CDC)

The CDC is the premier conference dedicated to the advancement of the theory and practice of systems and control. The CDC annually brings together an international community of researchers and practitioners in the field of automatic control to discuss new research results, perspectives on future developments, and innovative applications relevant to decision making, automatic control, and related areas.


2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020)

The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2020 will be the 17th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2020 meeting will continue this tradition of fostering cross-fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging.ISBI 2019 will be the 16th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2019 meeting will continue this tradition of fostering cross fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2018 will be the 15th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2018 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2017 will be the 14th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2017 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forumfor the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2016 willbe the thirteenth meeting in this series. The previous meetings have played a leading role in facilitatinginteraction between researchers in medical and biological imaging. The 2016 meeting will continue thistradition of fostering crossfertilization among different imaging communities and contributing to an integrativeapproach to biomedical imaging across all scales of observation.

  • 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2015 will be the 12th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2014 will be the eleventh meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013)

    To serve the biological, biomedical, bioengineering, bioimaging and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2011 IEEE 8th International Symposium on Biomedical Imaging (ISBI 2011)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2010 IEEE 7th International Symposium on Biomedical Imaging (ISBI 2010)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2009 IEEE 6th International Symposium on Biomedical Imaging (ISBI 2009)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2008 IEEE 5th International Symposium on Biomedical Imaging (ISBI 2008)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2007 IEEE 4th International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2007)

  • 2006 IEEE 3rd International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2006)

  • 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2004)

  • 2002 1st IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2002)


2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers.

  • 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premier annual computer vision event comprising the main conference and severalco-located workshops and short courses. With its high quality and low cost, it provides anexceptional value for students, academics and industry researchers.

  • 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers.

  • 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conferenceand 27co-located workshops and short courses. With its high quality and low cost, it provides anexceptional value for students,academics and industry.

  • 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry.

  • 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    computer, vision, pattern, cvpr, machine, learning

  • 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. Main conference plus 50 workshop only attendees and approximately 50 exhibitors and volunteers.

  • 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry.

  • 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Topics of interest include all aspects of computer vision and pattern recognition including motion and tracking,stereo, object recognition, object detection, color detection plus many more

  • 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Sensors Early and Biologically-Biologically-inspired Vision, Color and Texture, Segmentation and Grouping, Computational Photography and Video

  • 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Concerned with all aspects of computer vision and pattern recognition. Issues of interest include pattern, analysis, image, and video libraries, vision and graphics, motion analysis and physics-based vision.

  • 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Concerned with all aspects of computer vision and pattern recognition. Issues of interest include pattern, analysis, image, and video libraries, vision and graphics,motion analysis and physics-based vision.

  • 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2006 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)


2020 IEEE International Conference on Image Processing (ICIP)

The International Conference on Image Processing (ICIP), sponsored by the IEEE SignalProcessing Society, is the premier forum for the presentation of technological advances andresearch results in the fields of theoretical, experimental, and applied image and videoprocessing. ICIP 2020, the 27th in the series that has been held annually since 1994, bringstogether leading engineers and scientists in image and video processing from around the world.


More Conferences

Periodicals related to Neurology

Back to Top

Biomedical Circuits and Systems, IEEE Transactions on

The Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems ...


Biomedical Engineering, IEEE Reviews in

The IEEE Reviews in Biomedical Engineering will review the state-of-the-art and trends in the emerging field of biomedical engineering. This includes scholarly works, ranging from historic and modern development in biomedical engineering to the life sciences and medicine enabled by technologies covered by the various IEEE societies.


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Computers, IEEE Transactions on

Design and analysis of algorithms, computer systems, and digital networks; methods for specifying, measuring, and modeling the performance of computers and computer systems; design of computer components, such as arithmetic units, data storage devices, and interface devices; design of reliable and testable digital devices and systems; computer networks and distributed computer systems; new computer organizations and architectures; applications of VLSI ...


Control Systems Technology, IEEE Transactions on

Serves as a compendium for papers on the technological advances in control engineering and as an archival publication which will bridge the gap between theory and practice. Papers will highlight the latest knowledge, exploratory developments, and practical applications in all aspects of the technology needed to implement control systems from analysis and design through simulation and hardware.


More Periodicals


Xplore Articles related to Neurology

Back to Top

Revealing Clusters of Connected Pathways Through Multisource Data Integration in Huntington's Disease and Spastic Ataxia

IEEE Journal of Biomedical and Health Informatics, 2019

The advancement of scientific and medical research over the past years has generated a wealth of experimental data from multiple technologies, including genomics, transcriptomics, proteomics, and other forms of -omics data, which are available for a number of diseases. The integration of such multisource data is a key component toward the success of precision medicine. In this paper, we are ...


Image registration in neurology applications

2010 International Conference on Networking and Information Technology, 2010

The purpose of this paper is to present an overview of existing automatics medical image registration methods in neurology with a view to application BrainView, which can provide a general overview of image data sets and allow the operator to visually compare images in the medical domain. The aim of the developed application is a registration of a brain slices ...


Modeling and simulation of a NEUOROBIOFET for application in neurology

2015 International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV), 2015

Acetylcholine sensitive field effect transistor (AchFET) has been modeled and simulated to use as circuit element in a neuron circuit. AchFET has been modeled using enzyme kinetics and site binding theory. Based on the simulated characteristics, it is used as an analog of variable conductance in the Hodgkin-Huxley electrical model of neuron that was used to study the resistance and ...


Estimation of kinetic constants in double injection FDG-PET studies: application in neurology and oncology

1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255), 1998

In order to characterize physiological cerebral activation or tissue response to a treatment, at least two FDG-PET studies are mandatory. In this work, a study of one hour duration with two injections at 30 min apart is reported. The separation of the two input curves (IC) consisted of fitting the blood curve corresponding to the first injection using spectral analysis, ...


Multimodal Imaging in Neurology: Special Focus on MRI Applications and MEG

Multimodal Imaging in Neurology: Special Focus on MRI Applications and MEG, None

The field of brain imaging is developing at a rapid pace and has greatly advanced the areas of cognitive and clinical neuroscience. The availability of neuroimaging techniques, especially magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging (DTI) and magnetoencephalography (MEG) and magnetic source imaging (MSI) has brought about breakthroughs in neuroscience. To obtain comprehensive information about the activity ...


More Xplore Articles

Educational Resources on Neurology

Back to Top

IEEE-USA E-Books

  • Revealing Clusters of Connected Pathways Through Multisource Data Integration in Huntington's Disease and Spastic Ataxia

    The advancement of scientific and medical research over the past years has generated a wealth of experimental data from multiple technologies, including genomics, transcriptomics, proteomics, and other forms of -omics data, which are available for a number of diseases. The integration of such multisource data is a key component toward the success of precision medicine. In this paper, we are investigating a multisource data integration method developed by our group, regarding its ability to drive to clusters of connected pathways under two different approaches: first, a disease-centric approach, where we integrate data around a disease, and second, a gene-centric approach, where we integrate data around a gene. We have used as a paradigm for the first approach Huntington's disease (HD), a disease with a plethora of available data, whereas for the second approach the GBA2, a gene that is related to spastic ataxia (SA), a phenotype with sparse availability of data. Our paper shows that valuable information at the level of disease-related pathway clusters can be obtained for both HD and SA. New pathways that classical pathway analysis methods were unable to reveal, emerged as necessary “connectors” to build connected pathway stories formed as pathway clusters. The capability to integrate multisource molecular data, concluding to something more than the sum of the existing information, empowers precision and personalized medicine approaches.

  • Image registration in neurology applications

    The purpose of this paper is to present an overview of existing automatics medical image registration methods in neurology with a view to application BrainView, which can provide a general overview of image data sets and allow the operator to visually compare images in the medical domain. The aim of the developed application is a registration of a brain slices from computer tomography slides where the algorithm transforms the intensities of a source images and after it provides geometrical transformation with the minimisation of the sum of squared difference criterion.

  • Modeling and simulation of a NEUOROBIOFET for application in neurology

    Acetylcholine sensitive field effect transistor (AchFET) has been modeled and simulated to use as circuit element in a neuron circuit. AchFET has been modeled using enzyme kinetics and site binding theory. Based on the simulated characteristics, it is used as an analog of variable conductance in the Hodgkin-Huxley electrical model of neuron that was used to study the resistance and capacitance properties of a patch of squid axon membrane. PSPICE simulation of the circuit using AchFET gives satisfactory reproduction of sodium and potassium currents and simulated electronic action potential is very similar to the experimentally recorded one. Due to the simplicity of this circuit, it may be used as an ideal unit in neurology to study the receptor function and electrical activity of neuron.

  • Estimation of kinetic constants in double injection FDG-PET studies: application in neurology and oncology

    In order to characterize physiological cerebral activation or tissue response to a treatment, at least two FDG-PET studies are mandatory. In this work, a study of one hour duration with two injections at 30 min apart is reported. The separation of the two input curves (IC) consisted of fitting the blood curve corresponding to the first injection using spectral analysis, then estimating the second blood curve by removing the remnant of the first. Tissue time activity curves (tTAC) were fitted for the first 30 min using the first IC and were extrapolated till 60 min. This extrapolated part was removed from the tissue response to the second injection before being fitted using the second IC. Other data were obtained for simple injection from which regional cerebral metabolic rates for glucose (rCMRGlu) estimated from 0-30 min were compared to those obtained from 0-60 min. Maximal rCMRGlu differences in double injection with activation were found to be on the average four times higher than those from 0-30 and 0-60 min baseline simple injection. The method is expected to be more accurate to observe drug uptake or tumor response to a treatment.

  • Multimodal Imaging in Neurology: Special Focus on MRI Applications and MEG

    The field of brain imaging is developing at a rapid pace and has greatly advanced the areas of cognitive and clinical neuroscience. The availability of neuroimaging techniques, especially magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging (DTI) and magnetoencephalography (MEG) and magnetic source imaging (MSI) has brought about breakthroughs in neuroscience. To obtain comprehensive information about the activity of the human brain, different analytical approaches should be complemented. Thus, in "intermodal multimodality" imaging, great efforts have been made to combine the highest spatial resolution (MRI, fMRI) with the best temporal resolution (MEG or EEG). "Intramodal multimodality" imaging combines various functional MRI techniques (e.g., fMRI, DTI, and/or morphometric/volumetric analysis). The multimodal approach is conceptually based on the combination of different noninvasive functional neuroimaging tools, their registration and cointegration. In particular, the combination of imaging applications that map different functional systems is useful, such as fMRI as a technique for the localization of cortical function and DTI as a technique for mapping of white matter fiber bundles or tracts. This booklet gives an insight into the wide field of multimodal imaging with respect to concepts, data acquisition, and postprocessing. Examples for intermodal and intramodal multimodality imaging are also demonstrated. Table of Contents: Introduction / Neurological Measurement Techniques and First Steps of Postprocessing / Coordinate Transformation / Examples for Multimodal Imaging / Clinical Aspects of Multimodal Imaging / References / Biography

  • Detection of hyperperfusion on arterial spin labeling using deep learning

    Hyperperfusion detected on arterial spin labeling (ASL) images acquired after acute stroke onset has been shown to correlate with development of subsequent intracerebral hemorrhage. We present in this study a quantitative hyperperfusion detection model that can provide an objective decision support for the interpretation of ASL cerebral blood flow (CBF) maps and rapidly delineate hyperperfusion regions. The detection problem is solved using Deep Learning such that the model relates ASL image patches to the corresponding label (normal or hyperperfused). Our method takes into account the regional intensity values of contralateral hemisphere during the labeling of a pixel. Each input vector is associated to a label corresponding to the presence of hyperperfusion that was manually established by a clinical researcher in Neurology. When compared to the manually established hyperperfusion, the predicted maps reached an accuracy of 97.45 ± 2.49% after crossvalidation. Pattern recognition based on deep learning can provide an accurate and objective measure of hyperperfusion on ASL CBF images and could therefore improve the detection of hemorrhagic transformation in acute stroke patients.

  • Integrating Brain Implants With Local and Distributed Computing Devices: A Next Generation Epilepsy Management System

    Brain stimulation has emerged as an effective treatment for a wide range of neurological and psychiatric diseases. Parkinson's disease, epilepsy, and essential tremor have FDA indications for electrical brain stimulation using intracranially implanted electrodes. Interfacing implantable brain devices with local and cloud computing resources have the potential to improve electrical stimulation efficacy, disease tracking, and management. Epilepsy, in particular, is a neurological disease that might benefit from the integration of brain implants with off-the-body computing for tracking disease and therapy. Recent clinical trials have demonstrated seizure forecasting, seizure detection, and therapeutic electrical stimulation in patients with drug-resistant focal epilepsy. In this paper, we describe a next-generation epilepsy management system that integrates local handheld and cloud-computing resources wirelessly coupled to an implanted device with embedded payloads (sensors, intracranial EEG telemetry, electrical stimulation, classifiers, and control policy implementation). The handheld device and cloud computing resources can provide a seamless interface between patients and physicians, and realtime intracranial EEG can be used to classify brain state (wake/sleep, preseizure, and seizure), implement control policies for electrical stimulation, and track patient health. This system creates a flexible platform in which low demand analytics requiring fast response times are embedded in the implanted device and more complex algorithms are implemented in offthebody local and distributed cloud computing environments. The system enables tracking and management of epileptic neural networks operating over time scales ranging from milliseconds to months.

  • Striatal Contribution to Cognition: Working Memory and Executive Function in Parkinson's Disease before and after Unilateral Posteroventral Pallidotomy

    The basal ganglia are intimately connected to the frontal cortex via five fronto-striatal circuits. While the role of the frontal cortex in cognition has been extensively studied, the contribution of the basal ganglia to cognition has remained less clear. In Parkinson's disease, posteroventral pallidotomy (PVP) involves surgical lesioning of the internal section of the globus pallidus (GPi, the final output pathway from the basal ganglia) to relieve the motor symptoms of the disorder. PVP in Parkinson's disease provides a unique opportunity to investigate the impact of disruption of striatal outflow to the frontal cortex on cognition. We assessed executive function and working memory after withdrawal of medication in 13 patients with Parkinson's disease before and 3 months after unilateral PVP compared to 12 age-and IQ-matched normals assessed twice with an interval of 3 months. The tests used were: Wisconsin Card Sorting (WCST), Self-Ordered Random Number Sequences, Missing Digit Test, Paced Visual Serial Addition Test (PVSAT), and Visual Conditional Associative Learning Test (VCALT). After PVP, the patients performed significantly better on the Self-Ordered Random Number Sequences and the WCST, an improvement that was also observed in the normals across the two assessment and is therefore likely to reflect practice effects. Relative to the normals, the patients showed significant differential change following PVP on the Missing Digit Test and PVSAT, on which they performed worse after compared to before surgery, while the controls performed better on the second assessment. For the patients, performance on the VCALT also indicated deterioration after PVP, but the changes approached significance. The side of PVP had no effect on the results. The pattern of change observed 3 months after PVP was maintained at 15-month follow-up. The results suggest that striatal outflow to the frontal cortex may be essential for those aspects of executive function that showed deterioration after PVP. &

  • The usefulness of a simple computerized touch panel-type screening test for Alzheimer's disease patients

    The needs and importance of the simple screening examination for dementia have risen recently. In the present study, we corrected the patients of Alzheimer's disease, and performed the standard examination for dementia and a simple computerized touch panel-type screening test for the early diagnosis of dementia (touch panel-type screening test), and compared the scores. There is a good correlation MMSE score and a simple computerized touch panel-type screening test by single regression analysis. And so, a simple computerized touch panel-type screening test is very useful for assessment of dementia.

  • Insight: Semantic provenance and analysis platform for multi-center neurology healthcare research

    Insight is a Semantic Web technology-based platform to support large-scale secondary analysis of healthcare data for neurology clinical research. Insight features the novel use of: (1) provenance metadata, which describes the history or origin of patient data, in clinical research analysis, and (2) support for patient cohort queries across multiple institutions conducting research in epilepsy, which is the one of the most common neurological disorders affecting 50 million persons worldwide. Insight is being developed as a healthcare informatics infrastructure to support a national network of eight epilepsy research centers across the U.S. funded by the U.S. Centers for Disease Control and Prevention (CDC). This paper describes the use of the World Wide Web Consortium (W3C) PROV recommendation for provenance metadata that allows researchers to create patient cohorts based on the provenance of the research studies. In addition, the paper describes the use of descriptive logic-based OWL2 epilepsy ontology for cohort queries with “expansion of query expression” using ontology reasoning. Finally, the evaluation results for the data integration and query performance are described using data from three research studies with 180 epilepsy patients. The experiment results demonstrate that Insight is a scalable approach to use Semantic provenance metadata for context-based data analysis in healthcare informatics.



Standards related to Neurology

Back to Top

No standards are currently tagged "Neurology"


Jobs related to Neurology

Back to Top