Conferences related to Smart Inorganic Polymer

Back to Top

2020 IEEE 70th Electronic Components and Technology Conference (ECTC)

ECTC is the premier international conference sponsored by the IEEE Components, Packaging and Manufacturing Society. ECTC paper comprise a wide spectrum of topics, including 3D packaging, electronic components, materials, assembly, interconnections, device and system packaging, optoelectronics, reliability, and simulation.


2018 48th European Microwave Conference (EuMC)

The Premier European event for the disemination of knowledge about Microwave Technology.The event caters for the seasoned industrial engineer as well as the graduate student. Sessionsand workshops are held on the full range of microwave technology from field theory, throughcomponents and subsystems to systems.

  • 2017 47th European Microwave Conference (EuMC)

    The Premier European event for the disemination of knowledge about Microwave Technology.The event caters for the seasoned industrial engineer as well as the graduate student. Sessions and workshops are held on the full range of microwave technology from field theory, through components and subsystems to systems.

  • 2016 46th European Microwave Conference (EuMC)

    The Premier European event for the disemination of knowledge about Microwave Technology. The event caters for the seasoned industrial engineer as well as the graduate student. Sessions and workshops are held on the full range of microwave technology from field theory, through components and subsystems to systems.

  • 2015 European Microwave Conference (EuMC 2015)

    The 45th European Microwave Conference (EuMC) represents the main event in the European Microwave Week 2015, the largest event in Europe dedicated to microwave components, systems and technology. It is the premier event to present the current status and future trends in the field of microwave, millimeter-wave and terahertz systems and technologies. A broad range of high frequency related topics, from materials and technologies to integrated circuits, systems and applications will be addressed in all their aspects: theory, simulation, design and measurement.The European Microwave Conference provides many opportunities of networking and interaction with international experts in a wide variety of specialties, attracting delegates with academic as well as industrial backgrounds. In addition to scientific papers, contributions on industrial applications are also encouraged, covering the fields of instrumentation, medical, telecommunication, radar, space, automotive and defense systems.

  • 2014 44th European Microwave Conference (EuMC)

    EuMC is the premier European conference in the microwave field, which represent the ideal venue for prospective authors to present the status and trends in microwave and millimetre-wave systems and frequency related topics, from materials and technologies to integrated circuits, systems their aspects: theory, simulation, design and measurement including passive components, design of high frequency and high data rate photonics, highly stable and noiseless microwave wave sources, new linearisation techniques and the impact of new packaging technologies.

  • 2013 European Microwave Conference (EuMC)

    Status and trends in microwave and millimetre -wave systems and technologies. High-frequency related topics, from materials and technologies to integrated circuits, systems and applications in alltheir aspects: theory, simulation, design and measurement including passive components, modelling and design of high frequency and high data rate photonics, highly stable and noiseless microwave and millimetre-wave sources, new linearisation techniques and the impact of new packaging technologies on development

  • 2012 European Microwave Conference (EuMC)

    Microwave and millimeter wave: active/passive devices, antennas, electromagnetics, bio-interaction, circuits, manufacturing and measurement, MEMS, meta-materials, sensor networks, cognitive radio, 4G communications, space technology and applications.

  • 2011 European Microwave Conference (EuMC)

    Status and trends in microwave and millimetre-wave systems and technologies. High-frequency related topics, from materials and technologies to integrated circuits, systems and applications in all their aspects: theory, simulation, design and measurement including passive components, modelling and design of high frequency and high data rate photonics, highly stable and noiseless microwave and millimetre-wave sources, new linearisation techniques and the impact of new packaging technologies on development app

  • 2010 European Microwave Conference (EuMC)

    The European Microwave Conference is the premier forum for presentation of the present status and future trends in the field of microwave, millimetre- and submillimetre-wave systems and technologies.

  • 2009 European Microwave Conference (EuMC)

    The 39th European Microwave Conference (EuMC), is the core of the European Microwave Week 2009, the largest event in Europe dedicated to microwave electronics. It is the premier forum to present the actual status and future trends in the field of materials and technologies to integrated circuits, systems and applications will be addressed in all their aspects: theory, simulation, design and measurement.

  • 2008 European Microwave Conference (EuMC)

    The 38th European Microwave Conference (EuMC) in Amsterdam, The Netherlands, from 27 to 31 October, is the core of the European Microwave Week 2008, the largest event in Europe dedicated to microwave electronics. It is the premier forum to present the actual status and future trends in the field of materials and technologies to integrated circuits, systems and applications will be addressed in all their aspects: theory, simulation, design and measurement.

  • 2007 European Microwave Conference (EuMC)

    Status and trends in microwave and millimetre-wave systems and technologies. High-frequency related topics, from materials and technologies to integrated circuits, systems and applications in all their aspects: theory, simulation, design and measurement including passive components, modelling and design of high frequency and high data rate photonics, highly stable and noiseless microwave and millimetre-wave sources, new linearisation techniques and the impact of new packaging.

  • 2006 European Microwave Conference (EuMC)

  • 2005 European Microwave Conference (EuMC)

  • 2004 European Microwave Conference (EuMC)

  • 2003 European Microwave Conference (EuMC)

  • 1998 28th European Microwave Conference (EuMC)

  • 1997 27th European Microwave Conference (EuMC)


2018 Northwest Energy System Symposium (NWESS)

The intent of the 2018 Northwest Energy System Symposium is to provide a 2-day program to educate engineers, system operators, system planners, regulators energy consultants and others about emerging technologies that are transforming the utility energy systems. This 2-day conference is put on by area utilities, universities, consultants and manufacturers provides participants information and examples on technologies, issues and best practices affecting energy utilities and their customers.


2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)

The latest scientific and technological research results in M/NEMS, micro/nano/molecular fabrication, nano materials, nano photonics and nanoscale imaging, nanoscale robotics, molecular sensors and actuators, micro/nano fluidics, micro/nano mechanics, nano biology, and nano medicine.


2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)

Mobile robotics, medical robotics, tele-robotics, robot vision, sensing, sensor networks, multi-robot systems, virtual reality, human-machine interface, human-robot interaction, intelligent systems, Computational Intelligence, Emerging Technologies. Humanoid robots, biologically inspired robotics, biomimicking robots/systems, flying robots, underwater robots and snake robots. Smart structures, materials, and actuators, cellular/molecular motors, MEMS/nano fabrication, micro/nano robotics, micro/nano manipulation, micro/nano sensing.


More Conferences

Periodicals related to Smart Inorganic Polymer

Back to Top

Applied Superconductivity, IEEE Transactions on

Contains articles on the applications and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Power applications include magnet design as well asmotors, generators, and power transmission


Dielectrics and Electrical Insulation, IEEE Transactions on

Electrical insulation common to the design and construction of components and equipment for use in electric and electronic circuits and distribution systems at all frequencies.


Sensors Journal, IEEE

The Field of Interest of the IEEE Sensors Journal is the science and applications of sensing phenomena, including theory, design, and application of devices for sensing and transducing physical, chemical, and biological phenomena. The emphasis is on the electronics, physics, biology, and intelligence aspects of sensors and integrated sensor-actuators. (IEEE Guide for Authors) (The fields of interest of the IEEE ...




Xplore Articles related to Smart Inorganic Polymer

Back to Top

pH-Sensitive PP/Clay Nanocomposites for Beverage Smart Packaging

2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2007

The modification of clay by ion exchange reaction with cationic surfactants plays an important role in the greater interlayer spacing of Na-bentonite. Four types of quaternary alkyl ammonium ions, DO AM, DOEM, DCEM and DTDM, were introduced into the clay in order to investigate the effects of intercalation of the cationic surfactants. The organobentonites were characterized by XRD, FTIR and ...


A sensor-actuator integrated system based on IPMCs [ionic polymer metal composites]

SENSORS, 2004 IEEE, 2004

In this paper, an integrated motion sensor-actuator system is presented. The innovative system consists of a couple of ionic polymer metal composite (IPMC) strips working respectively as a sensor and as an actuator, showing the capability of this material to realize smart devices. Although a number of applications have been proposed to show that IPMCs can work both as actuator ...


Smart Fabrics and Interactive Textile: State of the Art and Future Challenges

Smart Fabrics and Interactive Textile: State of the Art and Future Challenges, 03/05/2009

Smart Fabrics and Interactive Textile (SFIT) based systems are conceived as the integration into textile of sensors, actuators, computing, and a power source, with the whole being part of an interactive communication network. Such systems could only be envisaged through a combination of advances in fields as fiber and polymer research, advanced material processing, microelectronics, signals processing, nanotechnologies, and telecommunication.Textile ...


Development of flexible carbon nanotube-polymer hybrid thin film for strain sensing

2009 59th Electronic Components and Technology Conference, 2009

A strain sensing material based on carbon nanotube/polymer conductive composite layers has been fabricated by flexible transfer of density controlled carbon nanotube networks. The carbon nanotube networks are prepared by vacuum filtration and lithographically patterning photoresist on the filter membrane. The density and thickness of the carbon nanotube networks are tuned by simply controlling the volume of dilute suspension filtered ...


An Extended Kalman Filter for temperature monitoring of a metal-polymer hybrid fibre based heater structure

2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017

In this paper an Extended Kalman Filter (EKF) is used as an observer for temperature monitoring, like a virtual sensor, of a metal-polymer fibre based heater structure. Metal-coated polymers are relevant for the realisation of smart systems (capable of both sensing and actuating). A real-time implementation of the temperature estimator is important to guarantee a gentle, fault-free operation of the ...


More Xplore Articles

Educational Resources on Smart Inorganic Polymer

Back to Top

IEEE-USA E-Books

  • pH-Sensitive PP/Clay Nanocomposites for Beverage Smart Packaging

    The modification of clay by ion exchange reaction with cationic surfactants plays an important role in the greater interlayer spacing of Na-bentonite. Four types of quaternary alkyl ammonium ions, DO AM, DOEM, DCEM and DTDM, were introduced into the clay in order to investigate the effects of intercalation of the cationic surfactants. The organobentonites were characterized by XRD, FTIR and TGA. From WAXD patterns, DOEM-B exhibited the largest interlayer spacing, promissing the most suitable choice for producing PP/clay nanocomposites. The nanoclay composites incorporating pH indicator were melt compounding through a twin screw extruder using Surlynreg as a reactive compatibilizer. Subsequently, the nanoclay composites were fabricated into the sample sheet for pH-sensitive test.

  • A sensor-actuator integrated system based on IPMCs [ionic polymer metal composites]

    In this paper, an integrated motion sensor-actuator system is presented. The innovative system consists of a couple of ionic polymer metal composite (IPMC) strips working respectively as a sensor and as an actuator, showing the capability of this material to realize smart devices. Although a number of applications have been proposed to show that IPMCs can work both as actuator or as sensor, none has been produced that exploits both properties in one application. The developed system is composed of a sensor that monitors the vibrations of a membrane under the effects of external disturbances. The sensor output is manipulated and sent to the actuator to reduce vibrations of the membrane itself. Experimental results show that the vibrations of the system are reduced when the control loop is closed.

  • Smart Fabrics and Interactive Textile: State of the Art and Future Challenges

    Smart Fabrics and Interactive Textile (SFIT) based systems are conceived as the integration into textile of sensors, actuators, computing, and a power source, with the whole being part of an interactive communication network. Such systems could only be envisaged through a combination of advances in fields as fiber and polymer research, advanced material processing, microelectronics, signals processing, nanotechnologies, and telecommunication.Textile is the common platform where smart materials in the form of fibers are integrated, where the properties of the material are augmented through combination of chemical surfaces processes, and where the structure of the fabric allows the use of redundant sensor configurations Promising recent developments in material processing, device design and system configuration enable the scientific and industrial community to concentrate efforts on the realization of smart textiles This course will discuss the use of textile materials for sensing functions. Textile technology for sensors fabrication will be presented. Methods for characterizations will also be discussed and examples of specific applications will be presented. The course will also provide an overview of future developments.

  • Development of flexible carbon nanotube-polymer hybrid thin film for strain sensing

    A strain sensing material based on carbon nanotube/polymer conductive composite layers has been fabricated by flexible transfer of density controlled carbon nanotube networks. The carbon nanotube networks are prepared by vacuum filtration and lithographically patterning photoresist on the filter membrane. The density and thickness of the carbon nanotube networks are tuned by simply controlling the volume of dilute suspension filtered through the membrane. These composites are resilient under large strain and there is a wide linear range of resistance-strain dependence. We demonstrate that the thin films with thicker CNTs networks exhibit more significant resistance- strain sensitivity under the same stain and the strain sensing material shows resistance-strain sensitivity depending only on the initial CNTs suspension volume. It may be possible to fabricate strain sensing materials in large volume for future smart device applications.

  • An Extended Kalman Filter for temperature monitoring of a metal-polymer hybrid fibre based heater structure

    In this paper an Extended Kalman Filter (EKF) is used as an observer for temperature monitoring, like a virtual sensor, of a metal-polymer fibre based heater structure. Metal-coated polymers are relevant for the realisation of smart systems (capable of both sensing and actuating). A real-time implementation of the temperature estimator is important to guarantee a gentle, fault-free operation of the heater and to reject disturbances. It can be used to control the resulting temperature without a direct measurement or to guarantee the users' safety by reacting to overheating. An estimation strategy is necessary because for normal operation in the real world, measurements of the temperature are usually not available, but it is important to know it in order to implement health monitoring algorithms or to do a safe shutdown if necessary. Simulations justify the observation strategy while measurements validate the utilized model.

  • Super-fine ink-jet printing for nanotechnology

    We introduce an ultra-fine inkjet system as a powerful tool for nanotechnology research which allows arrangements of dots with a minimum size of less than one micron. Diverse materials such as conductive polymers, fine ceramics, metal particles etc. can be used as ink materials. Using the ultra-fine silver paste, we achieved the direct print of ultra-fine metallic wire of only a few micrometers in width without any pre-patterning treatment on substrate. Furthermore, using the transitionmetal nano-particles as catalyst-ink, patterned array of carbon nano-tubes were successfully obtained. A field emission from the patterned carbon nano-tubes is also confirmed.

  • Stretchable Optical Sensing Patch System Integrated Heart Rate, Pulse Oxygen Saturation, and Sweat pH Detection

    Objective: Continuous measurement of key physiological parameters, such as heart rate (HR), pulse oxygen saturation (SpO2), and sweat pH value, has very broad applications in healthcare, disease surveillance, and fitness and sports training. In this study, a stretchable optical sensing patch system was developed for real-time continuous noninvasive monitoring of the HR, SpO2, and sweat pH, and the sensing data were transmitted to a smartphone through Bluetooth. Methods: The sensor patch system adopted serpentine stretchable interconnects between the optical sensor and microcontroller chip with wireless function on a flexible substrate. The pH sensing function was implemented by coating a pH sensitive organically modified silicate film on the surface of a commercial blood oxygen sensor, achieving simultaneous measurement of HR, SpO2, and sweat pH with a single sensor. Results: Real-time on-body assessment was carried out to evaluate the sensor patch system, showing its excellent repeatability and applicability. The sensor patch system could withstand up to 35% extension and exhibited a pH sensitivity of 4.42 mV/pH from 4.0 to 8.0, while the accuracy of HR from 25 to 250 b/min and SpO2 from 70% to 100% sensing were ±1 b/min and ±2%, respectively. Conclusion: The triple sensing functions was achieved through a single optical sensor on a flexible substrate while holding excellent contact with the body. Significance: The sensor patch system can be used for fitness guidance, skin disease detection, and wound monitoring and management by replacing related sensitive films.

  • Study and simulation of a solar generator in site Saharien

    The various energy constraints dictated by a series of global economic and environmental social factors require the international scientific community to find viable alternatives to conventional energy sources. Renewable energies such as the photovoltaic one is among the most coveted and developed energy sources worldwide. Technology of inorganic semiconductor-based silicon and other considerably developed and responds more to the desired energy goals Technology of inorganic semiconductor. Which is very expensive and requires considerable resources, making it limited to the most powerful country in the world. The technology of organic semiconductor is much easier and more accessible which promises a very bright. It can be considered as a real alternative for countries with limited resources for the widespread use of solar energy [1]. This research is in the field of preparation and characterization of organic solar cells based on semiconducting polymers. After having carried out a scientific statement on the technology of organic semiconductors, have been able to be achieved in collaboration with the Department of Industrial Chemistry a multilayer organic cell where the polymer is polyaniline. The disadvantage of this solar cells type is its low efficiency. The cell we have developed is to present a comparison of the literature performance. This technology must was improved to increase its performance, which may not be on inorganic cells but enough to meet domestic needs.

  • Improvement on Partial Discharge Resistance of Epoxy/Al2O3 Nanocomposites by Irradiation With 7.5 MeV Electron Beam

    Epoxy resin used as insulating material in electrical and electronic devices is often subjected to a great risk of deterioration induced by partial discharge (PD). The resistance to PD becomes a key factor that influences the lifetime of the epoxy resin. Nano-sized inorganic filler doping has been reported to have a positive effect on improving the PD resistance by forming epoxy based nanocomposites with proper type and content of nano-fillers. In this work, attempts have been made to further improve the PD resistance of epoxy nanocomposites through high energy irradiation method. The epoxy/Al2O3 nanocomposites have been prepared with the filler content of 4 wt%. The neat epoxy and the nanocomposites were both irradiated by a 7.5 MeV electron beam with the total dose of 500 kGy. PD erosion of the material was introduced by means of needle-to-plate electrode system, and the PD resistance was estimated through the measurement of maximum erosion depth occurring on the sample surface. Frequency dependent relative permittivity, scanning electron microscopy, differential scanning calorimetry, and fourier transform infrared spectrum have been employed to assist in the analysis of radiation induced variation in sample's resistance to PD. Obtained results indicated that after irradiated by the electron beam with 500 kGy, the samples exhibited remarkable enhancement in PD resistance compared with the un-irradiated samples. It suggests that the PD resistance of the nanocomposites is dependent upon the molecular structure of the base polymer, which could be modified by the irradiation induced crosslinking reaction.

  • The identification of discrete Preisach model based on IPMC

    Ion-exchange polymer metal composite(IPMC) is one kind of electroactive polymer(EAP) material, which is also called artificial muscle. Like most smart materials, such as piezoelectric, shape memory alloys (SMA), hysteresis also exits in IPMC. Based on the property of classic Preisach model, a discrete Preisach model, which was simulated using MATLAB, verified two properties, wiping-out property and congruency property, of the classic Preisach model. We discuss different identification signals, and give a novel signal which is effective for IPMC. The results of identification using the novel signal are fitable to solve the values of density function of Preisach, and we finally obtain all positive values of density function.



Standards related to Smart Inorganic Polymer

Back to Top

No standards are currently tagged "Smart Inorganic Polymer"


Jobs related to Smart Inorganic Polymer

Back to Top