Conferences related to Image texture analysis

Back to Top

2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invitedsessions of the latest significant findings and developments in all the major fields of biomedical engineering.Submitted papers will be peer reviewed. Accepted high quality papers will be presented in oral and postersessions, will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE


2020 59th IEEE Conference on Decision and Control (CDC)

The CDC is the premier conference dedicated to the advancement of the theory and practice of systems and control. The CDC annually brings together an international community of researchers and practitioners in the field of automatic control to discuss new research results, perspectives on future developments, and innovative applications relevant to decision making, automatic control, and related areas.


2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020)

The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2020 will be the 17th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2020 meeting will continue this tradition of fostering cross-fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging.ISBI 2019 will be the 16th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2019 meeting will continue this tradition of fostering cross fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2018 will be the 15th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2018 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2017 will be the 14th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2017 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forumfor the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2016 willbe the thirteenth meeting in this series. The previous meetings have played a leading role in facilitatinginteraction between researchers in medical and biological imaging. The 2016 meeting will continue thistradition of fostering crossfertilization among different imaging communities and contributing to an integrativeapproach to biomedical imaging across all scales of observation.

  • 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2015 will be the 12th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2014 will be the eleventh meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013)

    To serve the biological, biomedical, bioengineering, bioimaging and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2011 IEEE 8th International Symposium on Biomedical Imaging (ISBI 2011)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2010 IEEE 7th International Symposium on Biomedical Imaging (ISBI 2010)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2009 IEEE 6th International Symposium on Biomedical Imaging (ISBI 2009)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2008 IEEE 5th International Symposium on Biomedical Imaging (ISBI 2008)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2007 IEEE 4th International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2007)

  • 2006 IEEE 3rd International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2006)

  • 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2004)

  • 2002 1st IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2002)


2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers.

  • 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premier annual computer vision event comprising the main conference and severalco-located workshops and short courses. With its high quality and low cost, it provides anexceptional value for students, academics and industry researchers.

  • 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers.

  • 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conferenceand 27co-located workshops and short courses. With its high quality and low cost, it provides anexceptional value for students,academics and industry.

  • 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry.

  • 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    computer, vision, pattern, cvpr, machine, learning

  • 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. Main conference plus 50 workshop only attendees and approximately 50 exhibitors and volunteers.

  • 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    CVPR is the premiere annual Computer Vision event comprising the main CVPR conference and 27 co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry.

  • 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Topics of interest include all aspects of computer vision and pattern recognition including motion and tracking,stereo, object recognition, object detection, color detection plus many more

  • 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Sensors Early and Biologically-Biologically-inspired Vision, Color and Texture, Segmentation and Grouping, Computational Photography and Video

  • 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Concerned with all aspects of computer vision and pattern recognition. Issues of interest include pattern, analysis, image, and video libraries, vision and graphics, motion analysis and physics-based vision.

  • 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Concerned with all aspects of computer vision and pattern recognition. Issues of interest include pattern, analysis, image, and video libraries, vision and graphics,motion analysis and physics-based vision.

  • 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2006 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)


2020 IEEE International Conference on Image Processing (ICIP)

The International Conference on Image Processing (ICIP), sponsored by the IEEE SignalProcessing Society, is the premier forum for the presentation of technological advances andresearch results in the fields of theoretical, experimental, and applied image and videoprocessing. ICIP 2020, the 27th in the series that has been held annually since 1994, bringstogether leading engineers and scientists in image and video processing from around the world.


More Conferences

Periodicals related to Image texture analysis

Back to Top

Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Circuits and Systems for Video Technology, IEEE Transactions on

Video A/D and D/A, display technology, image analysis and processing, video signal characterization and representation, video compression techniques and signal processing, multidimensional filters and transforms, analog video signal processing, neural networks for video applications, nonlinear video signal processing, video storage and retrieval, computer vision, packet video, high-speed real-time circuits, VLSI architecture and implementation for video technology, multiprocessor systems--hardware and software-- ...


Circuits and Systems I: Regular Papers, IEEE Transactions on

Part I will now contain regular papers focusing on all matters related to fundamental theory, applications, analog and digital signal processing. Part II will report on the latest significant results across all of these topic areas.


Dielectrics and Electrical Insulation, IEEE Transactions on

Electrical insulation common to the design and construction of components and equipment for use in electric and electronic circuits and distribution systems at all frequencies.


Engineering in Medicine and Biology Magazine, IEEE

Both general and technical articles on current technologies and methods used in biomedical and clinical engineering; societal implications of medical technologies; current news items; book reviews; patent descriptions; and correspondence. Special interest departments, students, law, clinical engineering, ethics, new products, society news, historical features and government.


More Periodicals

Most published Xplore authors for Image texture analysis

Back to Top

Xplore Articles related to Image texture analysis

Back to Top

IEE Colloquium on 'Texture Classification: Theory and Applications (Digest No.1994/178)

IEE Colloquium on Texture Classification: Theory and Applications, 1994

None


Analyzing the bidirectional texture function

Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231), 1998

The observed image texture for a rough surface has a complex dependence on the illumination and viewing angles due to effects such as local shading, interreflections, and the shadowing and occlusion of surface elements. We introduce the dimensionality surface as a representation for the visual complexity of a material sample. The dimensionality surface defines the number of basis features that ...


Affine correlation

Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170), 1998

We propose a method for maximising the affine correlation between images. The method is more global in its search than for example steepest descent based methods. In a first approximation, there is no need to compute any derivatives and it is shown that the results are very good. The method is based on certain changes of coordinates in the images ...


The analysis and recognition of real-world textures in three dimensions

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000

The observed image texture for a rough surface has a complex dependence on the illumination and viewing angles due to effects such as foreshortening, local shading, interreflections, and the shadowing and occlusion of surface elements. We introduce the dimensionality surface as a representation for the visual complexity of a material sample. The dimensionality surface defines the number of basis textures ...


Texture fusion and feature selection applied to SAR imagery

IEEE Transactions on Geoscience and Remote Sensing, 1997

The discrimination ability of four different methods for texture computation in ERS SAR imagery is examined and compared. Feature selection methodology and discriminant analysis are applied to find the optimal combination of texture features. By combining features derived from different texture models, the classification accuracy increased significantly.


More Xplore Articles

Educational Resources on Image texture analysis

Back to Top

IEEE-USA E-Books

  • IEE Colloquium on 'Texture Classification: Theory and Applications (Digest No.1994/178)

    None

  • Analyzing the bidirectional texture function

    The observed image texture for a rough surface has a complex dependence on the illumination and viewing angles due to effects such as local shading, interreflections, and the shadowing and occlusion of surface elements. We introduce the dimensionality surface as a representation for the visual complexity of a material sample. The dimensionality surface defines the number of basis features that are required to represent the space of observed textures for a surface as a function of ranges of illumination and viewing angles. Basis textures are represented using multiband correlation functions. We study properties of the dimensionality surface for real materials using the Columbia Utrecht Reflectance and Texture (CUReT) database. The analysis shows that the dependence of the dimensionality surface on ranges of illumination and viewing angles is approximately linear with a slope dependent on the complexity of the sample.

  • Affine correlation

    We propose a method for maximising the affine correlation between images. The method is more global in its search than for example steepest descent based methods. In a first approximation, there is no need to compute any derivatives and it is shown that the results are very good. The method is based on certain changes of coordinates in the images and extensive use of the fast Fourier transformation (FFT). This makes the method very fast, when implemented on a computer.

  • The analysis and recognition of real-world textures in three dimensions

    The observed image texture for a rough surface has a complex dependence on the illumination and viewing angles due to effects such as foreshortening, local shading, interreflections, and the shadowing and occlusion of surface elements. We introduce the dimensionality surface as a representation for the visual complexity of a material sample. The dimensionality surface defines the number of basis textures that are required to represent the observed textures for a sample as a function of ranges of illumination and viewing angles. Basis textures are represented using multiband correlation functions that consider both within and between color band correlations. We examine properties of the dimensionality surface for real materials using the Columbia Utrecht Reflectance and Texture (CUReT) database. The analysis shows that the dependence of the dimensionality surface on ranges of illumination and viewing angles is approximately linear with a slope that depends on the complexity of the sample. We extend the analysis to consider the problem of recognizing rough surfaces in color images obtained under unknown illumination and viewing geometry. We show, using a set of 12,505 images from 61 material samples, that the information captured by the multiband correlation model allows surfaces to be recognized over a wide range of conditions. We also show that the use of color information provides significant advantages for three-dimensional texture recognition.

  • Texture fusion and feature selection applied to SAR imagery

    The discrimination ability of four different methods for texture computation in ERS SAR imagery is examined and compared. Feature selection methodology and discriminant analysis are applied to find the optimal combination of texture features. By combining features derived from different texture models, the classification accuracy increased significantly.

  • A Texture Extraction Method Based on Local Binary Pattern Operator

    Most of image texture extraction methods are of high computational complexity, which hardly restricts their application in image processing fields. This paper proposes an improved local binary pattern operator to extract the image texture features. In the algorithm, single pixel is replaced with homogeneous object obtained by an object-oriented image segmentation method to exact image texture. At the same time, conditional probability is adopted as the parameter of image texture. The improvement makes it more valid to analysis object by fuzzy inference based image textures. In our experiments, the extracted image texture features are utilized for classifying images. The achieved good results indicate that the proposed method is faster than other methods while remaining close classification performance

  • MR image texture analysis applied to the diagnosis and tracking of Alzheimer's disease

    The authors assess the value of magnetic resonance (MR) image texture in Alzheimer's disease (AD) both as a diagnostic marker and as a measure of progression. T/sub 1/-weighted MR scans were acquired from 40 normal controls and 24 AD patients. These were split into a training set (20 controls, 40 AD) and a test set (20 controls, 14 AD). In addition, five control subjects and five AD patients were scanned repeatedly over several years. On each scan a texture feature vector was evaluated over the brain; this consisted of 260 measures derived from the spatial gray-level dependence method. A stepwise discriminant analysis was applied to the training set, to obtain a linear discriminant function. In the test set, this function yielded significantly different values for the control and AD groups (p<10/sup -4/) with only small group overlap; a classification rate of 91% was obtained. For the repeatedly scanned control subjects, the median increment in the discriminant function between successive scans of 0.12 was not significantly different from zero (p>0.05); for the repeatedly scanned AD patients the corresponding median increment of 1.4 was significantly different from zero (p<0.05). MR image texture may be a useful aid in the diagnosis and tracking of Alzheimer's disease.

  • High Resolution Satellite Image Texture for Moderate Relief Terrain Analysis

    None

  • Image Texture Classification Using Texture Spectrum and Local Binary Pattern

    None

  • The angular orientation partition edge descriptor

    Edges are one of the most important image visual features. They are highly related with shapes and can also be representative of the image textures. Edge orientations histograms are usually very reliable descriptors suitable for image analysis, search and retrieval. In this work edges detected with Canny algorithm are described by their angular orientations. The resulting descriptor is resilient to image rotation and image translation. It is also resilient to noise. An example of automatic image semantic annotation using this description method is reported using a database with 738 images. The K Nearest Neighbor is used as classifier and the Manhattan distance is used for image similarity computation. The annotation that results with this description method is compared with the provided with other well known descriptors. These examples show that a reliable high level automatic description based in the semantic content can be extracted.



Standards related to Image texture analysis

Back to Top

No standards are currently tagged "Image texture analysis"


Jobs related to Image texture analysis

Back to Top