Conferences related to Region 7

Back to Top

2020 IEEE International Conference on Plasma Science (ICOPS)

IEEE International Conference on Plasma Science (ICOPS) is an annual conference coordinated by the Plasma Science and Application Committee (PSAC) of the IEEE Nuclear & Plasma Sciences Society.


2020 IEEE International Magnetic Conference (INTERMAG)

INTERMAG is the premier conference on all aspects of applied magnetism and provides a range of oral and poster presentations, invited talks and symposia, a tutorial session, and exhibits reviewing the latest developments in magnetism.


2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)

HRI is a highly selective annual conference that showcases the very best research and thinking in human-robot interaction. HRI is inherently interdisciplinary and multidisciplinary, reflecting work from researchers in robotics, psychology, cognitive science, HCI, human factors, artificial intelligence, organizational behavior, anthropology, and many other fields.

  • 2018 13th ACM/IEEE International Conference on Human-Robot Interaction (HRI)

    HRI is a highly selective annual conference that showcases the very best research and thinking in human-robot interaction. HRI is inherently interdisciplinary and multidisciplinary, reflecting work from researchersin robotics, psychology, cognitive science, HCI, human factors, artificial intelligence, organizational behavior,anthropology, and many other fields.

  • 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI)

    The conference serves as the primary annual meeting for researchers in the field of human-robot interaction. The event will include a main papers track and additional sessions for posters, demos, and exhibits. Additionally, the conference program will include a full day of workshops and tutorials running in parallel.

  • 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI)

    This conference focuses on the interaction between humans and robots.

  • 2015 10th ACM/IEEE International Conference on Human-Robot Interaction (HRI)

    HRI is a single -track, highly selective annual conference that showcases the very bestresearch and thinking in human -robot interaction. HRI is inherently interdisciplinary and multidisciplinary,reflecting work from researchers in robotics, psychology, cognitive science, HCI, human factors, artificialintelligence, organizational behavior, anthropology, and many other fields.

  • 2014 9th ACM/IEEE International Conference on Human-Robot Interaction (HRI)

    HRI is a highly selective annual conference that showcases the very best research and thinking in human -robot interaction. HRI is inherently interdisciplinary and multidisciplinary, reflecting work from researchers in robotics, psychology, cognitive science, HCI, human factors, artificial intelligence, organizational behavior, anthropology, and many other fields.

  • 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI)

    HRI is a single -track, highly selective annual conference that showcases the very best research and thinking in human-robot interaction. HRI is inherently interdisciplinary and multidisciplinary, reflecting work from researchers in robotics, psychology, cognitive science, HCI, human factors, artificial intelligence, organizational behavior, anthropology, and many other fields.

  • 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI)

    HRI is a single-track, highly selective annual conference that showcases the very best research and thinking in human-robot interaction. HRI is inherently interdisciplinary and multidisciplinary, reflecting work from researchers in robotics, psychology, cognitive science, HCI, human factors, artificial intelligence, organizational behavior, anthropology, and many other fields.

  • 2011 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI)

    Robot companions Lifelike robots Assistive (health & personal care) robotics Remote robots Mixed initiative interaction Multi-modal interaction Long-term interaction with robots Awareness and monitoring of humans Task allocation and coordination Autonomy and trust Robot-team learning User studies of HRI Experiments on HRI collaboration Ethnography and field studies HRI software architectures HRI foundations Metrics for teamwork HRI group dynamics.

  • 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI)

    TOPICS: Robot companions, Lifelike robots, Assistive (health & personal care) robotics, Remote robots, Mixed initiative interaction, Multi-modal interaction, Long-term interaction with robots, Awareness and monitoring of humans, Task allocation and coordination, Autonomy and trust, Robot-team learning, User studies of HRI, Experiments on HRI collaboration, Ethnography and field studies, HRI software architectures

  • 2009 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI)

    * Robot companions * Lifelike robots * Assistive (health & personal care) robotics * Remote robots * Mixed initiative interaction * Multi-modal interaction * Long-term interaction with robots * Awareness and monitoring of humans * Task allocation and coordination * Autonomy and trust * Robot-team learning * User studies of HRI * Experiments on HRI collaboration * Ethnography and field studies * HRI software architectures

  • 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI)

    Robot companions Lifelike robots Assistive (health & personal care) robotics Remote robots Mixed initiative interaction Multi-modal interaction Long-term interaction with robots Awareness and monitoring of humans Task allocation and coordination Autonomy and trust Robot-team learning User studies of HRI Experiments on HRI collaboration Ethnography and field studies HRI software architectures HRI foundations Metrics for teamwork HRI group dynamics Individual vs. group HRI

  • 2007 2nd Annual Conference on Human-Robot Interaction (HRI)


2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops andinvitedsessions of the latest significant findings and developments in all the major fields ofbiomedical engineering.Submitted papers will be peer reviewed. Accepted high quality paperswill be presented in oral and postersessions, will appear in the Conference Proceedings and willbe indexed in PubMed/MEDLINE & IEEE Xplore


2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)

Photovoltaic materials, devices, systems and related science and technology


More Conferences

Periodicals related to Region 7

Back to Top

Antennas and Propagation, IEEE Transactions on

Experimental and theoretical advances in antennas including design and development, and in the propagation of electromagnetic waves including scattering, diffraction and interaction with continuous media; and applications pertinent to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques.


Applied Superconductivity, IEEE Transactions on

Contains articles on the applications and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Power applications include magnet design as well asmotors, generators, and power transmission


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Circuits and Systems for Video Technology, IEEE Transactions on

Video A/D and D/A, display technology, image analysis and processing, video signal characterization and representation, video compression techniques and signal processing, multidimensional filters and transforms, analog video signal processing, neural networks for video applications, nonlinear video signal processing, video storage and retrieval, computer vision, packet video, high-speed real-time circuits, VLSI architecture and implementation for video technology, multiprocessor systems--hardware and software-- ...


Circuits and Systems II: Express Briefs, IEEE Transactions on

Part I will now contain regular papers focusing on all matters related to fundamental theory, applications, analog and digital signal processing. Part II will report on the latest significant results across all of these topic areas.


More Periodicals


Xplore Articles related to Region 7

Back to Top

Conditional independence graphs for functional connectivity in functional MRI

[{u'author_order': 1, u'affiliation': u'INSERM U494, Paris, France', u'authorUrl': u'https://ieeexplore.ieee.org/author/37284157300', u'full_name': u'G. Marrelec', u'id': 37284157300}, {u'author_order': 2, u'authorUrl': u'https://ieeexplore.ieee.org/author/38361377400', u'full_name': u'M. Pelegrini-Issac', u'id': 38361377400}, {u'author_order': 3, u'authorUrl': u'https://ieeexplore.ieee.org/author/37267944700', u'full_name': u'H. Benali', u'id': 37267944700}] Proceedings IEEE International Symposium on Biomedical Imaging, 2002

A recent concern in BOLD fMRI data analysis is extraction of connectivity information between regions. Functional connectivity and effective connectivity are the two notions defined so far, but the former lacks the ability to reveal direct interactions, while use of the latter requires the connectivity model to be set a priori. We propose that conditional independence graphs be considered as ...


Collector optimization for high-speed bipolar transistors

[{u'author_order': 1, u'affiliation': u'Siemens AG, Munich, Germany', u'authorUrl': u'https://ieeexplore.ieee.org/author/37360770900', u'full_name': u'J. Weng', u'id': 37360770900}, {u'author_order': 2, u'affiliation': u'Siemens AG, Munich, Germany', u'authorUrl': u'https://ieeexplore.ieee.org/author/37301277800', u'full_name': u'K. Ehinger', u'id': 37301277800}, {u'author_order': 3, u'affiliation': u'Siemens AG, Munich, Germany', u'authorUrl': u'https://ieeexplore.ieee.org/author/37284139300', u'full_name': u'T.F. Meister', u'id': 37284139300}] IEEE Transactions on Electron Devices, 1992

An efficient optimization procedure to improve the AC performance of integrated bipolar transistors is presented. Using the same emitter and base doping profiles, a reduction of the forward transit time T/sub f/ and thus a considerable improvement in the transit frequency f/sub T/ (more than 33% in the peak value) are achieved by optimizing the collector dopant profile.<<ETX>>


High-frequency operation of lateral hot-electron transistors

[{u'author_order': 1, u'affiliation': u'Dept. of Comput. Hardware, Aizu Univ., Japan', u'authorUrl': u'https://ieeexplore.ieee.org/author/37314881200', u'full_name': u'V. Ryzhii', u'id': 37314881200}, {u'author_order': 2, u'affiliation': u'Dept. of Comput. Hardware, Aizu Univ., Japan', u'authorUrl': u'https://ieeexplore.ieee.org/author/37354437200', u'full_name': u'G. Khrenov', u'id': 37354437200}] IEEE Transactions on Electron Devices, 1995

The high-frequency operation of a lateral hot-electron transistor (LHET) with near ballistic transport in the base and collector is considered. The high- frequency efficiency of the hot-electron transport in the base and collector are evaluated. It is shown that due to two-dimensional electron gas the high- frequency properties of the LHET collector are quite different from the properties of the ...


General eigenvalue equations for optical planar waveguides with arbitrarily graded-index profiles

[{u'author_order': 1, u'affiliation': u'Dept. of Electron. Eng., Seoul Nat. Univ., South Korea', u'authorUrl': u'https://ieeexplore.ieee.org/author/37438975900', u'full_name': u'Min-Sub Chung', u'id': 37438975900}, {u'author_order': 2, u'authorUrl': u'https://ieeexplore.ieee.org/author/37440615800', u'full_name': u'Chang-Min Kim', u'id': 37440615800}] Journal of Lightwave Technology, 2000

Accurate eigenvalue equations for planar waveguides with arbitrarily graded- index profile are derived and expressed in closed forms. A combination of the modified Airy functions and the Wenzel-Kramers-Brillouin (WKB) solutions are employed as field solutions, which turn out to represent almost exact field profiles. The use of new trial solutions enables us to calculate phase shifts at turning points very ...


A new adaptive learning algorithm using magnified gradient function

[{u'author_order': 1, u'authorUrl': u'https://ieeexplore.ieee.org/author/37271680300', u'full_name': u'S.C. Ng', u'id': 37271680300}, {u'author_order': 2, u'authorUrl': u'https://ieeexplore.ieee.org/author/37272961500', u'full_name': u'C.C. Cheung', u'id': 37272961500}, {u'author_order': 3, u'authorUrl': u'https://ieeexplore.ieee.org/author/37265751900', u'full_name': u'S.H. Leung', u'id': 37265751900}, {u'author_order': 4, u'authorUrl': u'https://ieeexplore.ieee.org/author/37323799100', u'full_name': u'A. Luk', u'id': 37323799100}] IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222), 2001

An algorithm is proposed to solve the "flat spot" problem in backpropagation networks by magnifying the gradient function. The idea of the learning algorithm is to vary the gradient of the activation function so as to magnify the backward propagated error signal gradient function especially when the output approaches a wrong value, thus the convergence rate can be accelerated and ...


More Xplore Articles

Educational Resources on Region 7

Back to Top

eLearning

No eLearning Articles are currently tagged "Region 7"

IEEE-USA E-Books

  • Women in Engineering - Book 7: Having It All: One Woman's Journey

    Book 7 of IEEE-USA's Women in Engineering series E-Books, join author Tanya Candia on her professional career and life journey. Candia is an international marketing and business management consultant, and is president and chief executive of Candia Communications LLC in Saratoga, California. Her marketing and strategy consulting company works with companies in Europe, the United States and the Asia-Pacific region. With more than 25 years of experience with startups and established companies, Candia has led high-growth business and product strategies, technology strategic marketing, branding, communications, and public relations efforts. She is also author of the popular, five-book, IEEE-USA E-Book series, Starting Your Start-Up.

  • Chapter 7 Practical Measurement of Engine Emissions

    The subject of engine emissions is expected to be at the forefront of environmental regulations and consumers’ concerns for years to come. As technology develops to comply with new and different requirements in various regions of the world, understanding the fundamental principles of how engine emissions occur, and how they can be properly measured, is vitally important. Engine Emissions Measurement Handbook, developed and co-authored by HORIBA Automotive Test Systems team addresses the main aspects of this subject. Written with the technical user in mind, this title is a must-have for those involved in engine development and testing, and environmental researchers focusing on better ways to minimize emissions pollution. Using easy-to- understand language, Engine Emissions Measurement Handbook covers, among others, the following topics: • Measurement of gaseous emissions • Measurement of particulate emission • Evaporative emissions measurement • Principles of exhaust gas analyzers • Vehicle emissions testing equipment • Emissions measurement applications • Emissions regulations around the world

  • Adaptive Spatial Filters with predefined Region of Interest for EEG based Brain-Computer-Interfaces

    The performance of EEG-based Brain-Computer-Interfaces (BCIs) critically depends on the extraction of features from the EEG carrying information relevant for the classification of different mental states. For BCIs employing imaginary movements of different limbs, the method of Common Spatial Patterns (CSP) has been shown to achieve excellent classification results. The CSP- algorithm however suffers from a lack of robustness, requiring training data without artifacts for good performance. To overcome this lack of robustness, we propose an adaptive spatial filter that replaces the training data in the CSP approach by a-priori information. More specifically, we design an adaptive spatial filter that maximizes the ratio of the variance of the electric field originating in a predefined region of interest (ROI) and the overall variance of the measured EEG. Since it is known that the component of the EEG used for discriminating imaginary movements originates in the motor cortex, we design two adaptive spatial filters with the ROIs centered in the hand areas of the left and right motor cortex. We then use these to classify EEG data recorded during imaginary movements of the right and left hand of three subjects, and show that the adaptive spatial filters outperform the CSP-algorithm, enabling classification rates of up to 94.7 % without artifact rejection.

  • chapter 7 Fuel Injection and Spray Characterization

    The increasing concern about CO2 emissions and energy prices has led to new CO2 emission and fuel economy legislation being introduced in world regions served by the automotive industry. In response, automotive manufacturers and Tier-1 suppliers are developing a new generation of internal combustion (IC) engines with ultra-low emissions and high fuel efficiency. To further this development, a better understanding is needed of the combustion and pollutant formation processes in IC engines. As efficiency and emission abatement processes have reached points of diminishing returns, there is more of a need to make measurements inside the combustion chamber, where the combustion and pollutant formation processes take place. However, there is currently no good overview of how to make these measurements. Based on the author’s previous SAE book, Engine Combustion Instrumentation and Diagnostics, this book focuses on laser-based optical techniques for combustion flows and in-cylinder measurements. Included are new chapters on optical engines and optical equipment, case studies, and an updated description of each technique. The purpose of this book is to provide, in one publication, an introduction to experimental techniques that are best suited for in-cylinder engine combustion measurements. It provides sufficient details for readers to set up and apply these techniques to IC engines and combustion flows.

  • Computer-aided Detection of Architectural Distortion in Prior Mammograms of Interval Cancer

    Architectural distortion is an important and early sign of breast cancer, but because of its subtlety, it is a common cause of false-negative findings on screening mammograms. Screening mammograms obtained prior to the detection of cancer could contain subtle signs of early stages of breast cancer, in particular, architectural distortion. This book presents image processing and pattern recognition techniques to detect architectural distortion in prior mammograms of interval-cancer cases. The methods are based upon Gabor filters, phase portrait analysis, procedures for the analysis of the angular spread of power, fractal analysis, Laws' texture energy measures derived from geometrically transformed regions of interest (ROIs), and Haralick's texture features. With Gabor filters and phase-portrait analysis, 4,224 ROIs were automatically obtained from 106 prior mammograms of 56 interval-cancer cases, including 301 true-positive ROIs related to architectural distortion, and from 52 mammograms of 13 normal cases. For each ROI, the fractal dimension, the entropy of the angular spread of power, 10 Laws' texture energy measures, and Haralick's 14 texture features were computed. The areas under the receiver operating characteristic (ROC) curves obtained using the features selected by stepwise logistic regression and the leave-one-image-out method are 0.77 with the Bayesian classifier, 0.76 with Fisher linear discriminant analysis, and 0.79 with a neural network classifier. Free-response ROC analysis indicated sensitivities of 0.80 and 0.90 at 5.7 and 8.8 false positives (FPs) per image, respectively, with the Bayesian classifier and the leave-one-image-out method. The present study has demonstrated the ability to detect early signs of breast cancer 15 months ahead of the time of clinical diagnosis, on the average, for interval-cancer cases, with a sensitivity of 0.8 at 5.7 FP/image. The presented computer-aided detection techniques, dedicated to accurate detection and localization of architectural distortion, could lead to efficient detection of early and subtle signs of breast cancer at pre-mass-formation stages. Table of Contents: Introduction / Detection of Early Signs of Breast Cancer / Detection and Analysis of Oriented Patterns / Detection of Potential Sites of Architectural Distortion / Experimental Set Up and Datasets / Feature Selection and Pattern Classification / Analysis of Oriented Patterns Related to Architectural Distortion / Detection of Architectural Distortion in Prior Mammograms / Concluding Remarks

  • Introduction

    This book sheds light on three essential questions: 1. What is the likely supply of gasoline and diesel from oil worldwide to power light vehicles and trucks through 2030-2035? 2. Could any other fuel economically replace gasoline? Will different parts of the world answer that question differently? 3. How will the answers to these questions affect what we engineer, make, and drive in 2030–2035? As difficult as it is to predict timing of these events, the book presents reasonable assumptions and alternative scenarios. Since a switch to alternative technologies will require substantial investment, it is critical to have a sense of when. Despite the global reach of the automotive industry, it is unlikely that a solution for one region will fit all. A more reasonable goal is a set of projected ‘ecosystems’ using differing amounts of oil, electricity, or alternative fuels. From this, automotive managers and leaders can get a sense of how to make business decisions for the future. To frame comparisons, the author qualitatively assesses each alternative against these criteria: 1. energy density 2. scale 3. efficiency of use 4. consumer convenience 5. vehicle technical maturity 6. delivery infrastructure maturity 7. production infrastructure maturity 8. rate of progress Some alternative fuels will naturally be higher in some categories than others. For example, gasoline has higher energy density but when burned in internal combustion engines, has low efficiency. Batteries, on the other hand, have low energy density but are efficient for powering electric motors. For mapping out a long-term future and deciding how best to invest resources, a comparison of these critical criteria should help. The book is concisely written for executives, decision-makers, academics, automotive engineers and others who want or need a long-range view of trends that will influence vehicle fuels for the next 20 years.

  • About the Author

    This book sheds light on three essential questions: 1. What is the likely supply of gasoline and diesel from oil worldwide to power light vehicles and trucks through 2030-2035? 2. Could any other fuel economically replace gasoline? Will different parts of the world answer that question differently? 3. How will the answers to these questions affect what we engineer, make, and drive in 2030–2035? As difficult as it is to predict timing of these events, the book presents reasonable assumptions and alternative scenarios. Since a switch to alternative technologies will require substantial investment, it is critical to have a sense of when. Despite the global reach of the automotive industry, it is unlikely that a solution for one region will fit all. A more reasonable goal is a set of projected ‘ecosystems’ using differing amounts of oil, electricity, or alternative fuels. From this, automotive managers and leaders can get a sense of how to make business decisions for the future. To frame comparisons, the author qualitatively assesses each alternative against these criteria: 1. energy density 2. scale 3. efficiency of use 4. consumer convenience 5. vehicle technical maturity 6. delivery infrastructure maturity 7. production infrastructure maturity 8. rate of progress Some alternative fuels will naturally be higher in some categories than others. For example, gasoline has higher energy density but when burned in internal combustion engines, has low efficiency. Batteries, on the other hand, have low energy density but are efficient for powering electric motors. For mapping out a long-term future and deciding how best to invest resources, a comparison of these critical criteria should help. The book is concisely written for executives, decision-makers, academics, automotive engineers and others who want or need a long-range view of trends that will influence vehicle fuels for the next 20 years.

  • Chapter Six Summary and Speculations

    This book sheds light on three essential questions: 1. What is the likely supply of gasoline and diesel from oil worldwide to power light vehicles and trucks through 2030-2035? 2. Could any other fuel economically replace gasoline? Will different parts of the world answer that question differently? 3. How will the answers to these questions affect what we engineer, make, and drive in 2030–2035? As difficult as it is to predict timing of these events, the book presents reasonable assumptions and alternative scenarios. Since a switch to alternative technologies will require substantial investment, it is critical to have a sense of when. Despite the global reach of the automotive industry, it is unlikely that a solution for one region will fit all. A more reasonable goal is a set of projected ‘ecosystems’ using differing amounts of oil, electricity, or alternative fuels. From this, automotive managers and leaders can get a sense of how to make business decisions for the future. To frame comparisons, the author qualitatively assesses each alternative against these criteria: 1. energy density 2. scale 3. efficiency of use 4. consumer convenience 5. vehicle technical maturity 6. delivery infrastructure maturity 7. production infrastructure maturity 8. rate of progress Some alternative fuels will naturally be higher in some categories than others. For example, gasoline has higher energy density but when burned in internal combustion engines, has low efficiency. Batteries, on the other hand, have low energy density but are efficient for powering electric motors. For mapping out a long-term future and deciding how best to invest resources, a comparison of these critical criteria should help. The book is concisely written for executives, decision-makers, academics, automotive engineers and others who want or need a long-range view of trends that will influence vehicle fuels for the next 20 years.

  • Future Automotive Fuels And Energy

    This book sheds light on three essential questions: 1. What is the likely supply of gasoline and diesel from oil worldwide to power light vehicles and trucks through 2030-2035? 2. Could any other fuel economically replace gasoline? Will different parts of the world answer that question differently? 3. How will the answers to these questions affect what we engineer, make, and drive in 2030–2035? As difficult as it is to predict timing of these events, the book presents reasonable assumptions and alternative scenarios. Since a switch to alternative technologies will require substantial investment, it is critical to have a sense of when. Despite the global reach of the automotive industry, it is unlikely that a solution for one region will fit all. A more reasonable goal is a set of projected ‘ecosystems’ using differing amounts of oil, electricity, or alternative fuels. From this, automotive managers and leaders can get a sense of how to make business decisions for the future. To frame comparisons, the author qualitatively assesses each alternative against these criteria: 1. energy density 2. scale 3. efficiency of use 4. consumer convenience 5. vehicle technical maturity 6. delivery infrastructure maturity 7. production infrastructure maturity 8. rate of progress Some alternative fuels will naturally be higher in some categories than others. For example, gasoline has higher energy density but when burned in internal combustion engines, has low efficiency. Batteries, on the other hand, have low energy density but are efficient for powering electric motors. For mapping out a long-term future and deciding how best to invest resources, a comparison of these critical criteria should help. The book is concisely written for executives, decision-makers, academics, automotive engineers and others who want or need a long-range view of trends that will influence vehicle fuels for the next 20 years.

  • Chapter Two Natural Gas and Transport

    This book sheds light on three essential questions: 1. What is the likely supply of gasoline and diesel from oil worldwide to power light vehicles and trucks through 2030-2035? 2. Could any other fuel economically replace gasoline? Will different parts of the world answer that question differently? 3. How will the answers to these questions affect what we engineer, make, and drive in 2030–2035? As difficult as it is to predict timing of these events, the book presents reasonable assumptions and alternative scenarios. Since a switch to alternative technologies will require substantial investment, it is critical to have a sense of when. Despite the global reach of the automotive industry, it is unlikely that a solution for one region will fit all. A more reasonable goal is a set of projected ‘ecosystems’ using differing amounts of oil, electricity, or alternative fuels. From this, automotive managers and leaders can get a sense of how to make business decisions for the future. To frame comparisons, the author qualitatively assesses each alternative against these criteria: 1. energy density 2. scale 3. efficiency of use 4. consumer convenience 5. vehicle technical maturity 6. delivery infrastructure maturity 7. production infrastructure maturity 8. rate of progress Some alternative fuels will naturally be higher in some categories than others. For example, gasoline has higher energy density but when burned in internal combustion engines, has low efficiency. Batteries, on the other hand, have low energy density but are efficient for powering electric motors. For mapping out a long-term future and deciding how best to invest resources, a comparison of these critical criteria should help. The book is concisely written for executives, decision-makers, academics, automotive engineers and others who want or need a long-range view of trends that will influence vehicle fuels for the next 20 years.



Standards related to Region 7

Back to Top

No standards are currently tagged "Region 7"


Jobs related to Region 7

Back to Top