Conferences related to OFETs

Back to Top

2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)

The world's premiere conference in MEMS sensors, actuators and integrated micro and nano systems welcomes you to attend this four-day event showcasing major technological, scientific and commercial breakthroughs in mechanical, optical, chemical and biological devices and systems using micro and nanotechnology.The major areas of activity in the development of Transducers solicited and expected at this conference include but are not limited to: Bio, Medical, Chemical, and Micro Total Analysis Systems Fabrication and Packaging Mechanical and Physical Sensors Materials and Characterization Design, Simulation and Theory Actuators Optical MEMS RF MEMS Nanotechnology Energy and Power


2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT)

Process & Device Technologies1. Channel Engineering2. High-k/Metal gate Technology3. Advanced Source/Drain Technology4. Interconnect Technology5. Advanced 3D Integration6. Novel Process Technologies7. Ultra-Thin Body Transistors and Device Variability8. Advanced High-k Metal Gate SoC and High Performance CMOS Platforms 9. CMOS Performance Enhancing and Novel Devices 10. Advanced FinFETs and Nanowire FETs11. CNT, MTJ Devices and Nanowire Photodiodes12. Low- Power and Steep Slope Switching Devices13. Graphene Devices14. Advanced Technologies for Ge MOSFETs15. Organic semiconductor devices and technologies16. Compound semiconductor devices and Technology 17. Ultra High Speed Transistors, HEMT/HBT etc. 18. Advanced Power Devices and Reliability19. Flash Memory20. IT Magnetic RAM21. Resistive RAM

  • 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT)

    Process & Device Technologies1. Channel Engineering2. High-k/Metal gate Technology3. Advanced Source/Drain Technology4. Interconnect Technology5. Advanced 3D Integration6. Novel Process Technologies7. Ultra-Thin Body Transistors and Device Variability8. Advanced High-k Metal Gate SoC and High Performance CMOS Platforms 9. CMOS Performance Enhancing and Novel Devices 10. Advanced FinFETs and Nanowire FETs11. CNT, MTJ Devices and Nanowire Photodiodes12. Low- Power and Steep Slope Switching Devices13. Graphene Devices14. Advanced Technologies for Ge MOSFETs15. Organic semiconductor devices and technologies16. Compound semiconductor devices and Technology 17. Ultra High Speed Transistors, HEMT/HBT etc. 18. Advanced Power Devices and Reliability19. Flash Memory20. IT Magnetic RAM21. Resistive RAMs22. Phase Change Memory23. 3-Dimensional Memory24. MEMS Technology25. Thin Film Transistors26. Biosensors27. PV and Energy Harvesting28. Front End of Line (FEOL) R

  • 2014 IEEE 12th International Conference on Solid -State and Integrated Circuit Technology (ICSICT)

    Process & Device Technologies1. Channel Engineering2. High-k/Metal gate Technology3. Advanced Source/Drain Technology4. Interconnect Technology5. Advanced 3D Integration6. Novel Process Technologies7. Ultra-Thin Body Transistors and Device Variability8. Advanced High-k Metal Gate SoC and High Performance CMOS Platforms 9. CMOS Performance Enhancing and Novel Devices 10. Advanced FinFETs and Nanowire FETs11. CNT, MTJ Devices and Nanowire Photodiodes12. Low- Power and Steep Slope Switching Devices13. Graphene Devices14. Advanced Technologies for Ge MOSFETs15. Organic semiconductor devices and technologies16. Compound semiconductor devices and Technology 17. Ultra High Speed Transistors, HEMT/HBT etc. 18. Advanced Power Devices and Reliability19. Flash Memory20. IT Magnetic RAM21. Resistive RAMs22. Phase Change Memory23. 3-Dimensional Memory24. MEMS Technology25. Thin Film Transistors26. Biosensors27. PV and Energy Harvesting28. Front End of Line (FEOL) R

  • 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT)

    Silicon IC, Silicon/germanium devices , Interconnect , Low K and High Kdielectric , Advance Memories , nano -electronics, Organic and Compound semiconductor devices ,sensors and MEMS, Semiconductor material erization, Reliability , Modeling and simulation,Packaging and testing , Digital, Analog, Mixed Signal IC and SOC design technology,Low -power, RF devices & circuits, ICCAD

  • 2010 IEEE 10th International Conference on Solid-State and Integrated Circuit Technology (ICSICT)

    Silicon IC, Silicon/germanium devices , Interconnect , Low K and High K dielectric , Advance Memories , nano-electronics, Organic and Compound semiconductor devices , sensors and MEMS, Semiconductor material characterization, Reliability , Modeling and simulation, Packaging and testing , Digital, Analog, Mixed Signal IC and SOC design technology,Low-power, RF devices & circuits, IC CAD .

  • 2008 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT)

  • 2006 8th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT)

  • 2004 7th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT)


2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)

The conference for researchers and experts has been providing good opportunitiesto exchange scientific and technological knowledge on active-matrix flatpanel displays(AMFPDs), thin-film transistors (TFTs), thin-film materials and devices (TFMD), photovoltaics(PV) technologies, and other related topics. Papers are solicited on, but not limited to, thefollowing topics: Flat Panel Display (FPD): flexible display, LCDs, OLED, e-papers, 3D displays,touch screens, driving methods, integrated drivers, and display materials and systems. TFTsTechnologies (TFT): amorphous, microcrystalline and polycrystalline Si-based TFTs, organicTFTs, oxide TFTs, such as graphene, semiconductor nanowires, carbon nanotubes, and device modeling, device & circuit simulation, and their reliability.Photovoltaics (PV): thin-film solar cells, amorphous /crystalline Si heterojunction, transparent conductive oxides.

  • 2017 24th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)

    Conference for researchers and experts, this workshop has been providing good opportunities to exchange scientific and technological knowledge on active-matrix flatpanel displays (AMFPDs), thin-film transistors (TFTs), thin-film materials and devices (TFMD), photovoltaics (PV) technologies, and other related topics. Paper are solicited on, but not limited to, the following topics: Flat Panel Display (FPD): flexible display, LCDs, OLED, e-papers, 3D displays, touch screens, driving methods, integrated drivers, and display materials and systems. TFT Technologies (TFT): amorphous, microcrystalline and polycrystalline Si-based TFTs, organic TFTs, oxide TFTs, other material TFTs such as graphene, carbon nanotubes, and semiconductor nanowires, device modeling, device and circuit simulation, and reliability. Photovoltaics (PV): thin-film solar cells, amorphous/crystalline Si heterojunction, passivation, transparent conductive oxides.

  • 2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)

    Conference for researchers and experts, this workshop has been providing good opportunities to exchange scientific and technological knowledge on active-matrix flatpanel displays (AMFPDs), thin-film transistors (TFTs), thin-film materials and devices (TFMD), photovoltaics (PV) technologies, and other related topics. Papers are solicited on, but not limited to, the following topics: Flat Panel Display (FPD): LCDs OLED displays e papers 3 D displays LCDs, displays, epapers, 3-displays, flexible displays, touch screens, driving methods, integrated drivers, and display materials and systems. TFT Technologies (TFT): amorphous, microcrystalline, and polycrystalline Si TFTs, organicTFTs, oxide TFTs, other material TFTs such as graphene, carbon nanotubes, and semiconductor nanowires, device modeling, device and circuit simulation, and reliability. Photovoltaics (PV): thin-film solar cells, amorphous/crystalline Si heterojunction, passivation, transparent conductive oxides.

  • 2015 22nd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)

    Conference for researchers and experts, this workshop has been providing good opportunities to exchange scientific and technological knowledge on active-matrix flatpanel displays (AMFPDs), thin-film transistors (TFTs), thin-film materials and devices (TFMD), photovoltaics (PV) technologies, and other related topics. Papers are solicited on, but not limited to, the following topics: Flat Panel Display (FPD): LCDs OLED displays e papers 3 D displays LCDs,displays, epapers, 3-displays, flexible displays, touch screens, driving methods, integrated drivers, and display materials and systems. TFT Technologies (TFT): amorphous, microcrystalline, and polycrystalline Si TFTs,organicTFTs, oxide TFTs, other material TFTs such as graphene, carbon nanotubes, and semiconductor nanowires, device modeling, device and circuit simulation, and reliability. Photovoltaics (PV): thin-film solar cells, amorphous/crystalline Si heterojunction, passivation, transparent conductive oxides.

  • 2014 21st International Workshop on Active-Matrix Flatpanel Displays and Devices(AM-FPD)

    Conference for researchers and experts, this workshop has been providing good opportunities to exchange scientific and technological knowledge on active-matrix flatpanel displays (AMFPDs), thin-film transistors (TFTs), thin-film materials and devices (TFMD), photovoltaics (PV) technologies, and other related topics. Papers are solicited on, but not limited to, the following topics: Flat Panel Display (FPD): LCDs OLED displays e papers 3 D displays LCDs, displays, epapers, 3-displays, flexible displays, touch screens, driving methods, integrated drivers, and display materials and systems.TFT Technologies (TFT): amorphous, microcrystalline, and polycrystalline Si TFTs, organicTFTs, oxide TFTs, other material TFTs such as graphene, carbon nanotubes, and semiconductor nanowires, device modeling, device and circuit simulation, and reliability. Photovoltaics (PV): thin-film solar cells, amorphous/crystalline Si heterojunction, passivation, transparent conductive oxides.

  • 2013 Twentieth International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)

    Conference for researchers and experts, this workshop has been providing good opportunities to exchange scientific and technological knowledge on active-matrix flatpanel displays (AM-FPDs), thin-film transistors (TFTs), thin-film materials and devices (TFMD), photovoltaics (PV) technologies, and other related topics. Papers are solicited on, but not limited to, the following topics:

  • 2012 19th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)

    Conference for researchers and experts, this workshop has been providing good opportunities to exchange scientific ideas for advanced information on active-matrix flatpanel displays (AM-FPDs) including thin-film transistors (TFTs), and solar cells.


2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invitedsessions of the latest significant findings and developments in all the major fields of biomedical engineering.Submitted papers will be peer reviewed. Accepted high quality papers will be presented in oral and postersessions, will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE


2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC)

Covers all electronic materials and devices fields that involve nanotechnology

  • 2017 IEEE 12th Nanotechnology Materials and Devices Conference (NMDC)

    This conference serves as a perfect platform on which scientists and engineers can present and highlight some of the key advances in the research topics relevant to nanoscience and nanotechnology.

  • 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC)

    IEEE NMDC 2016 aims to foster communication between physicists, chemists, microbiologists and engineers from academics and industry, interested in nanodevices and nanostructured materials, advanced preparation techniques, new material properties, standards and safety issues of nanotechnology, in computer simulations and theoretical work. Interdisciplinary exchange between scientists and contributions from industrial researchers will stimulate gather knowledge and help inspire a new perspective in industrial applications on this exciting area.

  • 2015 IEEE Nanotechnology Materials and Devices Conference (NMDC)

    IEEE-NMDC 2015 is the 10th Nanotechnology Materials and Devices Conference. Published papers in the conference will be indexed at IEEExplore. A contest for the best paper award will be held and awards will be given at the end of the conference. Authors of the best papers of each track will be invited to submit their extended article version to: IEEE Transactions on Nanobioscience, IEEE Nanotechnology Magazine, and IEEE Transaction on Nanotechnology.

  • 2014 IEEE 9th Nanotechnology Materials and Devices Conference (NMDC)

    IEEE-NMDC 2014 wants to be a forum of discussion about nanotechnology, with a special focus on materials and devices. Topics:-Graphene and carbon nanotubes based materials and devices-Materials and devices for nanoelectronics-Materials and devices for energy and environmental applications-Nanostructures for future generation solar cells-Ion beam synthesis and modification of nanostructures-Advanced characterization of nanomaterials and nanostructures-Modeling and simulation of nanomaterials, structures, and devices-Metamaterials and plasmonic devices-Photonic materials and devices-Organic semiconductor materials, devices and applications-Nanostructures of oxide semiconductor materials-III-V semiconductors nanomaterials-Nanostructures for water purification-Nanomaterials and devices for biomedical applications-Standards and safety issues of nanotechnology-Fundamentals and applications of nanotubes, nanowires, quantum dots and other low dimensional materials

  • 2013 IEEE 8th Nanotechnology Materials and Devices Conference (NMDC)

  • 2012 IEEE 7th Nanotechnology Materials and Devices Conference (NMDC)

    Graphene and Nanotube Based Materials and Devices; MEMS/NEMS for Bio-Nanotechnology; Characterization and Simulation of Nanomaterials and Nanostructures; Materials and Devices for Nanoelectronics, Nano-Optics; Materials and Devices for Energy and Environmental Applications.

  • 2011 IEEE Nanotechnology Materials and Devices Conference (NMDC)

    NMDC aims to develop critical assessment of existing work and future directions in nanotechnology research including nanomaterials and fabrications, nanoelectronics, nanophotonics, devices, and integration. This conference will bring together key researchers from every sector in the nanotechnology research field, with a special focus on materials and devices.

  • 2010 IEEE Nanotechnology Materials and Devices Conference (NMDC)

    NMDC aims to develop critical assessment of existing work and future directions in nanotechnology research including nanomaterials and fabrications, nanoelectronics, nanophotonics, devices, and integration. This conference will bring together key researchers from all over the world and from every sector of academy and industry in the nanotechnology research field, with a special focus on materials and devices.

  • 2009 IEEE Nanotechnology Materials and Devices Conference (NMDC)

    NMDC aims to develop critical assessment of existing work and future directions in nanotechnology research including nanomaterials and fabrications, nanoelectronics, nanophotonics, devices, and integration. This conference will bring together key researchers from all over the world and from every sector of academy and industry in the nanotechnology research field, with a special focus on materials and devices.

  • 2008 2nd Nanotechnology Materials and Devices Conference (NMDC)

    NMDC aims to develop critical assessment of existing work and future directions in nanotechnology research including nanomaterials and fabrications, nanoelectronics, nanophotonics, devices, and integration. This conference will bring together key researchers from all over the world and from every sector of academy and industry in the nanotechnology research field, with a special focus on materials and devices.

  • 2006 Nanotechnology Materials and Devices Conference (NMDC)


More Conferences

Periodicals related to OFETs

Back to Top

Dielectrics and Electrical Insulation, IEEE Transactions on

Electrical insulation common to the design and construction of components and equipment for use in electric and electronic circuits and distribution systems at all frequencies.


Display Technology, Journal of

This publication covers the theory, design, fabrication, manufacturing and application of information displays and aspects of display technology that emphasize the progress in device engineering, device design, materials, electronics, physics and reliabilityaspects of displays and the application of displays.


Electron Device Letters, IEEE

Publishes original and significant contributions relating to the theory, design, performance and reliability of electron devices, including optoelectronic devices, nanoscale devices, solid-state devices, integrated electronic devices, energy sources, power devices, displays, sensors, electro-mechanical devices, quantum devices and electron tubes.


Electron Devices, IEEE Transactions on

Publishes original and significant contributions relating to the theory, design, performance and reliability of electron devices, including optoelectronics devices, nanoscale devices, solid-state devices, integrated electronic devices, energy sources, power devices, displays, sensors, electro-mechanical devices, quantum devices and electron tubes.


Nanotechnology, IEEE Transactions on

The proposed IEEE Transactions on Nanotechnology will be devoted to the publication of manuscripts of archival value in the general area of nanotechnology, that is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.


More Periodicals


Xplore Articles related to OFETs

Back to Top

Ambipolar organic field-effect transistor and inverter: Hybrid fabrication and high photoresponse

[{u'author_order': 1, u'affiliation': u'Physics Department, Narasinha Dutt College, Howrah, India, 711101', u'full_name': u'Biswanath Mukherjee'}] 2017 Devices for Integrated Circuit (DevIC), None

Highly aligned, unidirectional crystalline array of an organic molecule, viz, N, N'-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8) has been deposited in large area by solution self-assembly. A hybrid ambipolar organic field-effect transistor is designed comprising of crystalline assemblies of PTCDI-C8 and thin film of pentacene. The OFET exhibited high charge carrier mobilities, viz, μ~ 0.3 cm2/Vs and 0.4 cm2/Vs for electron and ...


Bias Stress Effects in Organic Thin Film Transistors

[{u'author_order': 1, u'affiliation': u'Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA94304', u'full_name': u'Tse Nga Ng'}, {u'author_order': 2, u'affiliation': u'Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA94304', u'full_name': u'Michael L. Chabinyc'}, {u'author_order': 3, u'affiliation': u'Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA94304', u'full_name': u'Robert A. Street'}, {u'author_order': 4, u'affiliation': u'Department of Materials Science and Engineering, Stanford University, Palo Alto, CA 94305', u'full_name': u'Alberto Salleo'}] 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual, None

Device instability and limited lifetime have been the hurdles to commercialization of organic electronics. Through electrical characterizations and microscopy techniques, much progress has been made in understanding gate bias stress that limits the stability of organic field-effect transistors. The kinetics and mechanisms of charge trapping in organic semiconductors are examined to explain the bias-stress behaviors. The external processing factors, such ...


Development of Organic Semiconductors Based on Quinacridone Derivatives for Organic Field-Effect Transistors: High-Voltage Logic Circuit Applications

[{u'author_order': 1, u'affiliation': u'Department of Chemical Engineering, Polymer Research Institute, Pohang University of Science and Technology, Pohang, South Korea', u'full_name': u'Yong Jin Jeong'}, {u'author_order': 2, u'affiliation': u'Semiconductor Research Center, Samsung Electronics, Hwasung, South Korea', u'full_name': u'Jongwook Jeon'}, {u'author_order': 3, u'affiliation': u'Research Institute of Sustainable Manufacturing System IT Convergence Material Research and Development Group, Korea Institute of Industrial Technology, Cheonan, South Korea', u'full_name': u'Sangkug Lee'}, {u'author_order': 4, u'affiliation': u'Department of Electronics Engineering, Korea National University of Transportation, Chungju, South Korea', u'full_name': u'Myounggon Kang'}, {u'author_order': 5, u'affiliation': u'Wireless Semiconductor Division, Broadcom, Seoul, South Korea', u'full_name': u'Heesauk Jhon'}, {u'author_order': 6, u'affiliation': u'Research Institute of Sustainable Manufacturing System IT Convergence Material Research and Development Group, Korea Institute of Industrial Technology, Cheonan, South Korea', u'full_name': u'Ho Jun Song'}, {u'author_order': 7, u'affiliation': u'Department of Chemical Engineering, Polymer Research Institute, Pohang University of Science and Technology, Pohang, South Korea', u'full_name': u'Chan Eon Park'}, {u'author_order': 8, u'affiliation': u'Department of Polymer Science and Engineering and Department of IT Convergence, Korea National University of Transportation, Chungju, South Korea', u'full_name': u'Tae Kyu An'}] IEEE Journal of the Electron Devices Society, 2017

Poly[quinacridone-alt-quaterthiophene] (PQCQT) was synthesized, using a Suzuki coupling reaction, to investigate the potential of quinacridone derivatives as organic semiconductors in organic fieldeffect transistors (OFETs) and circuits. A PQCQT film annealed at 150 °C yielded quite high field-effect performances, including a hole mobility of 2.0 × 10-2 cm2/(Vs). In addition, to confirm the feasibility of using PQCQT in high-voltage circuit applications, ...


PSpice model for hysteresis in pentacene field-effect transistors

[{u'author_order': 1, u'affiliation': u'Department of Electronics, Helmut Schmidt University - University of the Federal Armed Forces Hamburg, olstenhofweg 85, D-22043, Germany', u'full_name': u'C. Ucurum'}, {u'author_order': 2, u'affiliation': u'Department of Electronics, Helmut Schmidt University - University of the Federal Armed Forces Hamburg, olstenhofweg 85, D-22043, Germany', u'full_name': u'H. Siemund'}, {u'author_order': 3, u'affiliation': u'Department of Electronics, Helmut Schmidt University - University of the Federal Armed Forces Hamburg, olstenhofweg 85, D-22043, Germany', u'full_name': u'H. Goebel'}] PORTABLE-POLYTRONIC 2008 - 2nd IEEE International Interdisciplinary Conference on Portable Information Devices and the 2008 7th IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, None

A PSpice model for hysteresis in pentacene field-effect transistors (FETs) is introduced. The model is based on the charge trap related threshold voltage shift in organic FETs (OFETs). The validity of the model is shown through the comparison of PSpice simulations with both static and transient measurements.


High-Performance Air-Stable Solution Processed Organic Transistors

[{u'author_order': 1, u'affiliation': u'Department of Electrical Engineering, Stanford University, CA 94305', u'full_name': u'Zihong Liu'}, {u'author_order': 2, u'affiliation': u'Department of Chemical Engineering, Stanford University, CA 94305', u'full_name': u'Hector A. Becerril'}, {u'author_order': 3, u'affiliation': u'Department of Chemical Engineering, Stanford University, CA 94305', u'full_name': u'Mark E. Roberts'}, {u'author_order': 4, u'affiliation': u'Department of Electrical Engineering, Stanford University, CA 94305', u'full_name': u'Yoshio Nishi'}, {u'author_order': 5, u'affiliation': u'Department of Chemical Engineering, Stanford University, CA 94305, Phone: (650) 723-2419, Fax: (650) 723-9780, Email: zbao@stanford.edu', u'full_name': u'Zhenan Bao'}] 2008 Device Research Conference, None

Solution-processed organic field-effect transistors (SPOFETs) have attracted wide interest in the past decade as they hold great promise for roll-to-roll production of ubiquitous flexible electronic circuits, displays, etc. by low- cost unconventional means, such as screen and inkjet printing. Despite the tremendous progress, it remains a challenge to fabricate consistently high- mobility air-stable SPOFETs at low-temperature for practical applications. Here ...


More Xplore Articles

Educational Resources on OFETs

Back to Top

eLearning

No eLearning Articles are currently tagged "OFETs"

IEEE.tv Videos

No IEEE.tv Videos are currently tagged "OFETs"

IEEE-USA E-Books

No IEEE-USA E-Books are currently tagged "OFETs"



Standards related to OFETs

Back to Top

No standards are currently tagged "OFETs"


Jobs related to OFETs

Back to Top