Autocorrelation

View this topic in
Autocorrelation is the cross-correlation of a signal with itself. (Wikipedia.org)






Conferences related to Autocorrelation

Back to Top

2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

For its 20th year edition, the IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 2019, returns to the country that saw its birth, France. Held in Cannes, in the heart of the world renown “French Riviera” (Cote d’Azur in French), the SPAWC 2019 will exhibit a technical program complete with high profile plenaries, invited and contributed papers, all appearing under IEEE explore. A flagship workshop of the IEEE SP Society SPCOM technical committee, SPAWC 2019 will combine cutting edge research in the fields of signal processing, statistical learning, communication theory, wireless networking and more, together with an exciting social program on the glamorous and sunny Riviera.


2018 11th Global Symposium on Millimeter Waves (GSMM)

The main theme of the GSMM2018 is Millimeter-wave Propagation: Hardware, Measurements and Systems. It covers millimeter-wave and THz devices, circuits, systems, and applications, with a special focus on mmWave propagation. The conference will include keynote talks, technical sessions, panels, and exhibitions on the listed topics.

  • 2017 10th Global Symposium on Millimeter-Waves (GSMM)

    The main theme of the symposium is Millimeter-Wave and Terahertz Sensing and Communications. It covers millimeter- wave and THz antennas, circuits, devices, systems and applications.

  • 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications

    The main theme of the conference is millimeter-wave and terahertz sensing and communications and the conference covers different topics related to millimeter-wave and terahertz technologies, such as: antennas and propagation, passive and active devices, radio astronomy, earth observation and remote sensing, communications, wireless power transfer, integration and packaging, photonic systems, and emerging technologies.

  • 2015 Global Symposium On Millimeter Waves (GSMM)

    The main theme of the GSMM 2015 is “Future Millimeter-wave and Terahertz Wireless and Wireline”. It will cover all emerging and future millimeter wave and terahertz software and hardware aspects ranging from communicating devices, circuits, systems and applications to passive and active sensing and imaging technologies and applications. The GSMM 2015 will feature world-class keynote speeches, technical sessions, panel discussions and industrial exhibitions in the following (but not limited to) topics listed below.In addition to the regular program, the GSMM 2015 will organize a unique industrial forum for presenting and discussing future wireless technologies and trends including 5G and Terahertz Wireless Systems.

  • 2012 5th Global Symposium on Millimeter Waves (GSMM 2012)

    The aim of the conferences is to bring together people involved in research and development of millimeter-wave components, equipment and systems, and to explore common areas.

  • 2009 Global Symposium On Millimeter Waves (GSMM 2009)

    The GSMM2009 will be held in Sendai, Japan from April 20 to April 22, 2009. The GSMM2009 is the second international conference in its name after the three conferences of TSMMW, MINT-MIS, and MilliLab Workshop on Millimeter-wave Technology and Applications were integrated into GSMM (Global Symposium on Millimeter Waves) in 2007. The main theme of the GSMM2009 is "Millimeter Wave Communications at Hand" and it will focus on millimeter wave devices and systems to realize Giga-bit wireless applications. The

  • 2008 Global Symposium On Millimeter Waves (GSMM 2008)

    Frequency Management and Utilization, Millimeter-Wave Communication Systems, Devices and Circuit Technologies, Wireless Access Systems, Mobile Access Systems, Satellite Communications, LANs and PANs, Home Link Systems, Photonics, Antennas and Propagation, Phased Array Antennas, Signal Processing, Wearable Devices and Systems, Automotive Radars and Remote Sensing, Supporting and Related Technologies


2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)

Industrial Informatics, Computational Intelligence, Control and Systems, Cyber-physicalSystems, Energy and Environment, Mechatronics, Power Electronics, Signal and InformationProcessing, Network and Communication Technologies


2018 14th IEEE International Conference on Signal Processing (ICSP)

ICSP2018 includes sessions on all aspects of theory, design and applications of signal processing. Prospective authors are invited to propose papers in any of the following areas, but not limited to: A. Digital Signal Processing (DSP)B. Spectrum Estimation & ModelingC. TF Spectrum Analysis & WaveletD. Higher Order Spectral AnalysisE. Adaptive Filtering &SPF. Array Signal ProcessingG. Hardware Implementation for Signal ProcessingH Speech and Audio CodingI. Speech Synthesis & RecognitionJ. Image Processing & UnderstandingK. PDE for Image ProcessingL.Video compression &StreamingM. Computer Vision & VRN. Multimedia & Human-computer InteractionO. Statistic Learning & Pattern RecognitionP. AI & Neural NetworksQ. Communication Signal processingR. SP for Internet and Wireless CommunicationsS. Biometrics & AuthentificationT. SP for Bio-medical & Cognitive ScienceU


2018 15th International Symposium on Wireless Communication Systems (ISWCS)

The aim of this symposium is to provide a forum for researchers and technologists to present new ideas and contributions in the form of technical papers, panel discussions, as well as real-world evaluation in the field of wireless communications, networking and signal processing.The symposium will bring together various wireless communication systems developers to discuss the current status, technical challenges, standards, fundamental issues, and future services and applications.

  • 2017 International Symposium on Wireless Communication Systems (ISWCS)

    This event will bring together experts from various research and industry fields of wireless communications, as well as representatives of standardization and regulatory bodies. In that context we foresee focusing on highly-innovative and state-of-the-art contributions in the form of original technical papers, demos or products and achievements shown at the accompanying exhibition.

  • 2016 International Symposium on Wireless Communication Systems (ISWCS)

    The Thirteen International Symposium on Wireless Communication Systems (ISWCS’16) will follow the over ten-year long traditionof that event which will bring together experts from various research and industry fields of wireless communications, as well as representatives of standardization and regulatory bodies. In that context we foresee focusing on highly-innovative and state-of-the-art contributions in the form of original technical papers, demos or products and achievements shown at the accompanying exhibition.

  • 2015 International Symposium on Wireless Communication Systems

    The aim of this symposium is to provide a forum for researchers and technologists to present new ideas and contributions in the form of technical papers, panel discussions as well as real-world evaluation of many ideas in wireless communications, networking and signal processing. This twelfth edition of the symposium will bring together various wireless communication systems developers to discuss the current status, technical challenges, standards, fundamental issues, and future services and applications. ISWCS’15 seeks to address and capture highly-innovative and state-of-the-art research from academia and the wireless industry, as well as standardization advances. The scope of the conference includes a wide range of technical challenges encompassing wireless communications, information theory, quality of service support, networking, signal processing, cross-layer design for improved performance, and future wireless broadband systems.

  • 2014 11th International Symposium on Wireless Communications Systems (ISWCS)

    Wireless communications are at the heart of a new field characterized by smart and flexible transceiver concepts, the convergence of systems and technologies, and the development of technologies with a user-centric focus. In this context, the objective of the ISWCS'2014 is to provide a recognized and dynamic forum for researchers and engineers from academia and industry to present and to discuss original ideas and contributions in all fields related to mobile wireless communication systems, and to capture highly-innovative and state-of-the-art research from academia, the wireless industry as well as standardization advances, and to present novel contributions in the form of tutorials, panel discussions, keynote speeches, technical papers, and posters. The scope of the conference includes a wide range of technical challenges encompassing wireless communications and networking, quality of service, signal processing, cross layer design, broadband access, and cooperative communication.

  • 2013 Tenth International Symposium on Wireless Communications Systems (ISWCS)

    wireless communications systems

  • 2012 9th International Symposium on Wireless Communication Systems (ISWCS 2012)

    The scope of the conference includes wireless communications, quality of service support, wireless networking, signal processing, cross layer air interface design and wireless broadband access.

  • 2011 8th International Symposium on Wireless Communication Systems (ISWCS 2011)

    ISWCS'11 seeks to address and capture highly innovative and state-of-the-art research from academia, the wireless industry and standardization bodies. The scope of the conference includes technical challenges encompassing wireless communications, quality of service support, wireless networking, signal processing, cross-layer air interface design, wireless broadband access and cooperative communication.

  • 2010 7th International Symposium on Wireless Communication Systems (ISWCS 2010)

    wireless and mobile communications, signal processing, networking, cognitive radio.

  • 2009 6th International Symposium on Wireless Communication Systems (ISWCS 2009)

    ISWCS 09 seeks to address highly-innovative research as well as wireless industry and standardization bodies contributions. The scope of the conference includes a wide range of technical challenges encompassing wireless communications and networking, quality of service support, cross-layer air interface design for improved performance, wireless broadband access, and cooperative networking.

  • 2008 IEEE International Symposium on Wireless Communication Systems (ISWCS 2008)

    Wireless communications is at the centre of a new and passionate era for telecommunications. The IEEE International Symposium on Wireless Communication Systems (ISWCS) positions itself as a recognised and dynamic forum for researchers and technologists to present and discuss original ideas in all fields related to wireless communication systems.

  • 2007 IEEE International Symposium on Wireless Communication Systems (ISWCS 2007)

    Identify and discuss the future technical challenges and business opportunities arising in the path towards the realization of ambient wireless communication networks. Together with the technical sessions, the symposium will feature tutorials and keynote presentations from leading wireless communication experts from industry, academia and regulatory and standardization bodies.

  • 2006 3rd International Symposium on Wireless Communication Systems (ISWCS 2006)

  • 2005 2nd International Symposium on Wireless Communication Systems (ISWCS 2005)

  • 2004 1st International Symposium on Wireless Communication Systems (ISWCS 2004)


More Conferences

Periodicals related to Autocorrelation

Back to Top

Antennas and Propagation, IEEE Transactions on

Experimental and theoretical advances in antennas including design and development, and in the propagation of electromagnetic waves including scattering, diffraction and interaction with continuous media; and applications pertinent to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques.


Applied Superconductivity, IEEE Transactions on

Contains articles on the applications and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Power applications include magnet design as well asmotors, generators, and power transmission


Automatic Control, IEEE Transactions on

The theory, design and application of Control Systems. It shall encompass components, and the integration of these components, as are necessary for the construction of such systems. The word `systems' as used herein shall be interpreted to include physical, biological, organizational and other entities and combinations thereof, which can be represented through a mathematical symbolism. The Field of Interest: shall ...


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Broadcasting, IEEE Transactions on

Broadcast technology, including devices, equipment, techniques, and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.


More Periodicals

Most published Xplore authors for Autocorrelation

Back to Top

Xplore Articles related to Autocorrelation

Back to Top

Photorefractive materials and devices

[{u'author_order': 1, u'affiliation': u'University of Southern California', u'full_name': u'J. Feinberg'}] Digest on Nonlinear Optics: Materials, Phenomena and Devices, 1990

None


Essay - Wacky electoral skepticism

[{u'author_order': 1, u'affiliation': u'North Dakota State University', u'full_name': u'R. Green'}] IEEE Potentials, 2004

None


Author's reply

[{u'author_order': 1, u'affiliation': u'Hanyang University', u'full_name': u'Youngyearl Han'}] IEEE Transactions on Vehicular Technology, 2000

None


Corrections to "Effects of bursty crosstalk in DSL"

[{u'author_order': 1, u'affiliation': u'Ikanos Communications', u'full_name': u'F. Ramirez-Mireles'}] IEEE Communications Letters, 2002

In the above-named article, corrections are made to the last sentence of the Introduction's second paragraph and the second equation of the Appendix.


Session: linear complexity

[] 1988 IEEE International Symposium on Information Theory., 1988

The following topics are dealt with: self-decimated sequences; arbitrary finite field sequences; and jump complexity.<<ETX>>


More Xplore Articles

Educational Resources on Autocorrelation

Back to Top

eLearning

No eLearning Articles are currently tagged "Autocorrelation"

IEEE.tv Videos

No IEEE.tv Videos are currently tagged "Autocorrelation"

IEEE-USA E-Books

  • Appendix IV: Stationarity, Ergodicity, and Autocorrelation Functions of Random Processes

  • Synchronization

    OFDM systems are very sensitive and vulnerable to synchronization errors. In this chapter, the authors look into synchronization errors and their effects, review synchronization techniques, and design ML synchronization block in the OFDM system. Synchronization techniques can be classified into data‐aided methods, decision‐directed methods, and non‐data‐aided methods. Many synchronization techniques are based on two important algorithms: autocorrelation and crosscorrelation. In OFDM systems, coarse timing synchronization and fine timing synchronization are usually based on autocorrelation and crosscorrelation, respectively. The purpose of the OFDM synchronization block is to detect an OFDM symbol, find the time and frequency offset, and maintain the orthogonality of each subcarrier. The chapter briefly investigates the hardware design issues of the OFDM synchronization. An OFDM synchronization block requires a real time implementation and a large size memory. The ASIC design would be the best solution.

  • Measurement Uncertainty in the Reverberation Chamber

    Due to the complicated and time‐varying test conditions, reverberation chamber (RC) measurement data are usually analysed from a statistical point of view. This chapter investigates the measurement uncertainty in the RC. The measurement uncertainty can be assessed by repeating the reference measurement several times with different positions and orientations of the reference antenna inside the RC. According to the statistics, the RC measurement uncertainty depends on its independent sample numbers. The chapter describes the autocorrelation function (ACF) method and spatial degrees of freedom (DoF) method for estimating the number of independent samples. The uncertainty models using the ACF method or DoF method relies on accurate estimation of the number of independent samples. For the sake of completeness and to facilitate the uncertainty analysis, the chapter briefly repeats the standard method for antenna efficiency measurement with slightly different notations.

  • Adaptive High-Resolution Sensor Waveform Design for Tracking

    Recent innovations in modern radar for designing transmitted waveforms, coupled with new algorithms for adaptively selecting the waveform parameters at each time step, have resulted in improvements in tracking performance. Of particular interest are waveforms that can be mathematically designed to have reduced ambiguity function sidelobes, as their use can lead to an increase in the target state estimation accuracy. Moreover, adaptively positioning the sidelobes can reveal weak target returns by reducing interference from stronger targets. The manuscript provides an overview of recent advances in the design of multicarrier phase-coded waveforms based on Bjorck constant- amplitude zero-autocorrelation (CAZAC) sequences for use in an adaptive waveform selection scheme for mutliple target tracking. The adaptive waveform design is formulated using sequential Monte Carlo techniques that need to be matched to the high resolution measurements. The work will be of interest to both practitioners and researchers in radar as well as to researchers in other applications where high resolution measurements can have significant benefits. Table of Contents: Introduction / Radar Waveform Design / Target Tracking with a Particle Filter / Single Target tracking with LFM and CAZAC Sequences / Multiple Target Tracking / Conclusions

  • MATLAB® Software for the Code Excited Linear Prediction Algorithm: The Federal Standard-1020

    This book describes several modules of the Code Excited Linear Prediction (CELP) algorithm. The authors use the Federal Standard-1016 CELP MATLAB® software to describe in detail several functions and parameter computations associated with analysis-by-synthesis linear prediction. The book begins with a description of the basics of linear prediction followed by an overview of the FS-1016 CELP algorithm. Subsequent chapters describe the various modules of the CELP algorithm in detail. In each chapter, an overall functional description of CELP modules is provided along with detailed illustrations of their MATLAB® implementation. Several code examples and plots are provided to highlight some of the key CELP concepts. Link to MATLAB® code found within the book Table of Contents: Introduction to Linear Predictive Coding / Autocorrelation Analysis and Linear Prediction / Line Spectral Frequency Computation / Spectral Distortion / The Codebook Search / The FS-1016 Decoder

  • Optimal Linear Estimators for Quantized Stationary Processes

    This chapter contains sections titled: Introduction, Autocorrelation of the Quantizer Output, A New Interpretation of the Describing function, Optimal Linear Filters for Quantized Measurements, Joint Optimization of the Quantizer and Filter, Summary

  • Sensitivities of Mean Square Estimation Error with Respect to Quantizer Parameters

    This chapter contains sections titled: Change in MSEE due to Changes in Output Autocorrelation, Partial Derivatives of b(m) with Respect to {dn}, Partial Derivatives of b(m) with respect to {yn}

  • Quantum Signal Processing

    In signal processing, the Wigner distribution is used as a quadratic time‐frequency representation derived from the notion of autocorrelation. Wigner distribution was introduced in the context of quantum physics, to introduce quantum corrections to statistical physics. It shows a remarkable property, which is that it can be defined in an equivalent manner to the frequency version of the signal, obtained by the Fourier transform (TF). Gauss sums are similar to Fourier sums with the clear difference that the index of summation appears in the quadratic phase in a location in a linear manner. This distribution can be interpreted as the signal's power spectral density. This chapter discusses the factorization properties of different Gauss sums. Heisenberg's view is the following: physical quantities in quantum mechanics can only be processed with a non‐commutative algebra. This leads to envisage that quantum mechanics can only be understood, from a geometrical point of view, via a non‐commutative geometry.

  • Multiple‐Access Channels

    This chapter focuses on uplink multiple‐access (MA) channels, which can be classified into two cases of flat fading and frequency‐selective fading. It investigates the mutual information of various MA schemes in two cases: AWGN and flat‐fading channels. For illustrating the practical application of MA schemes, the chapter considers IS‐95A CDMA and long term evolution (LTE) systems. In CDMA, a direct consequence of spanning each symbol of a user over its signature sequence is the spreading of its power spectrum. Processing gain associated with spreading spectrum in a CDMA system has an intuitive explanation. The chapter presents commonly used pseudo‐random (PN) sequences include m‐sequences, Walsh sequences, Gold sequences, and constant amplitude zero autocorrelation (CAZAC) sequences. CAZAC sequences have been adopted by third generation partnership project (3GPP) LTE as preamble signatures for the random access channel (RACH) in the uplink.

  • MATHEMATICAL BACKGROUND AND ANALYSIS TECHNIQUES

    This chapter provides the foundation for modeling and finding practical design solutions to communication system performance specifications. It describes the commonly used waveform modulations characterized as amplitude modulation (AM), phase modulation (PM), and frequency modulation (FM) waveforms. The chapter discusses the discrete Fourier transform (DFT), the fast Fourier transform (FFT), the pipeline implementation of the FFT, and applications involving waveform detection, interpolation, and power spectrum estimation. It introduces the concept of random variables and various probability density functions (pdf) and cumulative distribution functions (cdf) for continuous and discrete random variables. It focuses on characterization of several window functions that are used to improve the performance the FFT, decimation filtering, and signal parameter estimation. The chapter focuses on the subject of autocorrelation and crosscorrelation of real and complex deterministic functions and concludes with a list of frequently used mathematical formulas.



Standards related to Autocorrelation

Back to Top

No standards are currently tagged "Autocorrelation"


Jobs related to Autocorrelation

Back to Top