Conferences related to Cardiovascular system

Back to Top

2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invitedsessions of the latest significant findings and developments in all the major fields of biomedical engineering.Submitted papers will be peer reviewed. Accepted high quality papers will be presented in oral and postersessions, will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE


2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)

The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2018 will be the 15th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2018 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging.ISBI 2019 will be the 16th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2019 meeting will continue this tradition of fostering cross fertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2017 will be the 14th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2017 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forumfor the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2016 willbe the thirteenth meeting in this series. The previous meetings have played a leading role in facilitatinginteraction between researchers in medical and biological imaging. The 2016 meeting will continue thistradition of fostering crossfertilization among different imaging communities and contributing to an integrativeapproach to biomedical imaging across all scales of observation.

  • 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2015 will be the 12th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2014 will be the eleventh meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013)

    To serve the biological, biomedical, bioengineering, bioimaging and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2011 IEEE 8th International Symposium on Biomedical Imaging (ISBI 2011)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2010 IEEE 7th International Symposium on Biomedical Imaging (ISBI 2010)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2009 IEEE 6th International Symposium on Biomedical Imaging (ISBI 2009)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2008 IEEE 5th International Symposium on Biomedical Imaging (ISBI 2008)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2007 IEEE 4th International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2007)

  • 2006 IEEE 3rd International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2006)

  • 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2004)

  • 2002 1st IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2002)


2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)

Nanotechnology

  • 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)

    IEEE Nano is one of the largest nanotechnology conferences in the world, directly sponsored by the IEEE Nanotechnology Council. IEEE NANO 2017 will provide an international forum for inspiration, interactions and exchange of ideas in a wide variety of branches of nanotechnology and nanoscience, through feature tutorials, workshops, and track sessions; plenary and invited talks from the world most renowned scientists and engineers; exhibition of software, hardware, equipment, materials, services and literature. It is a must for students, educators, researchers, scientists and engineers engaged in a wide range of nanotechnology fields and related applications, including electronic materials, photonics, biotechnology, medicine, alternative energy, environment and electronic devices.

  • 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)

    IEEE-NANO is the flagship IEEE Nanotechnology conference. The conference scope covers a wide range in nanoscience and technology. In particular, it covers nanofabrication, nanomanufacturing, nanomaerials, nanobiomedicine, nanoenergy, nanoplasmonics, nanoelectronics, nanosensors and nanoactuators, characterisation and modelling of nano structures and devices. Research in both experiments and simulation is reported. Industry is encouraged to present its research projects.

  • 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO)

    The conference scope is to bring together researchers, industry workers, entrepreneurs and funding agency leaders, in the general area of nanotechnology. IEEE NANO 2015 will provide a forum for the exchange of ideas, interaction, networking and collaboration for research and development in nanotechnology with special attention to the latest advances in nanotechnology

  • 2014 IEEE 14th International Conference on Nanotechnology (IEEE-NANO)

    NANO is the flagship IEEE conference in Nanotechnology, which makes it a must for students, educators, researchers, scientists and engineers alike, working at the interface of nanotechnology and the many fields of electronic materials, photonics, bio-and medical devices, alternative energy, environmental protection, and multiple areas of current and future electrical and electronic applications. In each of these areas, NANO is the conference where practitioners will see nanotechnologies at work in both their own and related fields, from basic research and theory to industrial applications.

  • 2013 IEEE 13th International Conference on Nanotechnology (IEEE-NANO)

    Nanoelectronics, nanomanufacturing, nanomaterials, nanodevice, nanofibration, nanofluidics, nano-bio-medicine, NEMS applications, nanocircuits, nanorobotics, nanomanipulation, nanosensors and actuators, nanophotonics, nanomagnetics, micro-to-nano-scale bridging

  • 2012 IEEE 12th International Conference on Nanotechnology (IEEE-NANO)

    The conference scope covers a wide range in nanoscience and technology. In particular, it covers nanofabrication, nanomanufacturing, nanomaerials, nanobiomedicine, nanoenergy, nanoplasmonics, nanoelectronics, nanosensors and nanoactuators, characterisation and modelling of nano structures and devices. Research in both experiments and simulation is reported. Industry is encouraged to present its research projects.

  • 2011 10th Conference on Nanotechnology (IEEE-NANO)

    1. Nanomaterials and Nanostructures 2. Nanoelectronics and Nanodevices 3. Nanophotonics 4. Nano biotechnology and Nanomedicine 5. Nanorobotics and NEMS

  • 2011 IEEE 11th International Conference on Nanotechnology (IEEE-NANO)

    All areas of nanotechnology within the areas of IEEE interest, as covered by the member societies of the Nanotechnology Council.

  • 2010 IEEE 10th Conference on Nanotechnology (IEEE-NANO)

    - More Moore, More than Moore and Beyond-CMOS - Nano-optics, Nano-Photonics, Plasmonics, Nano-optoelectronics - Nanofabrication, Nanolithography, Nano Manipulation, Nanotools - Nanomaterials and Nanostructures - Nanocarbon, Nanodiamond, Graphene and CNT Based Technologies - Nano-sensors and Nano Membranes - Modeling and Simulation - System Integration (Nano/Micro/Macro), NEMS, and Actuators - Molecular Electronics, Inorganic Nanowires, Nanocrystals, Quantum Dots

  • 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO)

    THE CONFERENCE FOCUSES ON THE APPLICATION OF NANOSCIENCE AND NANOTECHNOLOGY. SPECIFICALLY, BOTH ENGINEERING ISSUE RELATED TO NANOFABBRICATION , NANOELECTRONICS, SENSOR SYSTEMS WILL BE COVERED IN ADDITION FOUNDAMENTAL ISSUES SUCH AS MODELLING, SYNTHESIS, CARACTARIZATION ETC.

  • 2008 8th IEEE Conference on Nanotechnology (IEEE-NANO)

    This conference is the sequel to meetings held in Maui (2001), Washington (2002), San Francisco (2003), Munich (2004), Nagoya (2005), Cinncinati (2006), and Hong Kong (2007). The conference focus will be on engineering and business issues related to nanoelectronics, circuits, architectures, sensor systems, integration, reliability and manufacturing in addition to fundamental issues such as modeling, growth/synthesis, and characterization. The conference will feature plenary, invited, and contributed papers

  • 2007 7th IEEE Conference on Nanotechnology (IEEE-NANO)

  • 2006 6th IEEE Conference on Nanotechnology (IEEE-NANO)

  • 2005 5th IEEE Conference on Nanotechnology (IEEE-NANO)

  • 2004 4th IEEE Conference on Nanotechnology (IEEE-NANO)

  • 2003 3rd IEEE Conference on Nanotechnology (IEEE-NANO)

  • 2002 2nd IEEE Conference on Nanotechnology (IEEE-NANO)

  • 2001 1st IEEE Conference on Nanotechnology (IEEE-NANO)


2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)

The symposium is the premier conference for computational medicine, providing a mechanism for the exchange of ideas and technologies between academics and industrial scientists, and attracts a worldwide audience.


2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)

Application, Scientific/Academic


More Conferences

Periodicals related to Cardiovascular system

Back to Top

Biomedical Circuits and Systems, IEEE Transactions on

The Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems ...


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Circuits and Systems II: Express Briefs, IEEE Transactions on

Part I will now contain regular papers focusing on all matters related to fundamental theory, applications, analog and digital signal processing. Part II will report on the latest significant results across all of these topic areas.


Computing in Science & Engineering

Physics, medicine, astronomy—these and other hard sciences share a common need for efficient algorithms, system software, and computer architecture to address large computational problems. And yet, useful advances in computational techniques that could benefit many researchers are rarely shared. To meet that need, Computing in Science & Engineering (CiSE) presents scientific and computational contributions in a clear and accessible format. ...


Control Systems Technology, IEEE Transactions on

Serves as a compendium for papers on the technological advances in control engineering and as an archival publication which will bridge the gap between theory and practice. Papers will highlight the latest knowledge, exploratory developments, and practical applications in all aspects of the technology needed to implement control systems from analysis and design through simulation and hardware.


More Periodicals

Most published Xplore authors for Cardiovascular system

Back to Top

Xplore Articles related to Cardiovascular system

Back to Top

Assessment of the cardiovascular regulation during robotic assisted locomotion in normal subjects: Autoregressive spectral analysis vs empirical mode decomposition

[{u'author_order': 1, u'affiliation': u'Biomedical Engineering Department, Polytechnic of Milan, Italy', u'full_name': u'V. Magagnin'}, {u'author_order': 2, u'affiliation': u'Biomedical Engineering Department, Polytechnic of Milan, Italy', u'full_name': u'E. G. Caiani'}, {u'author_order': 3, u'affiliation': u'Biomedical Engineering Department, Polytechnic of Milan, Italy', u'full_name': u'L. Fusini'}, {u'author_order': 4, u'affiliation': u'Department of Technologies for Health, Galeazzi Orthopaedic Institute IRCCS, University of Milan, Italy', u'full_name': u'M. Turiel'}, {u'author_order': 5, u'affiliation': u'Rehabilitation Unit, Galeazzi Ortophedic Hospital IRCCS, Milan, Italy', u'full_name': u'V. Licari'}, {u'author_order': 6, u'affiliation': u'Rehabilitation Unit, Galeazzi Ortophedic Hospital IRCCS, Milan, Italy', u'full_name': u'I. Bo'}, {u'author_order': 7, u'affiliation': u'Biomedical Engineering Department, Polytechnic of Milan, Italy', u'full_name': u'S. Cerutti'}, {u'author_order': 8, u'affiliation': u'Department of Technologies for Health, Galeazzi Orthopaedic Institute IRCCS, University of Milan, Italy', u'full_name': u'A. Porta'}] 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, None

Robotic assisted locomotion systems are recently gaining appreciation as methods to rehabilitate individuals with lost sensory motor function. In the present study we compare autoregressive power spectral analysis and empirical mode decomposition (EMD) applied to the analysis of short-term heart period variability regarding their ability to typify autonomic response during a robotic assisted locomotion session consisting in the following phases: ...


Model Based Analysis of The Effects of Respiration Signal Parameters on Heart Rate Variability

[{u'author_order': 1, u'affiliation': u'Başkent Üniversitesi, Teknik Bilimler Meslek Yüksekokulu, Bağlica Kamp., Ankara, myildiz@baskent.edu.tr', u'full_name': u'M. Yildiz'}, {u'author_order': 2, u'full_name': u'Y. Ozbay'}, {u'author_order': 3, u'full_name': u'Y. Z. Ider'}] 2006 IEEE 14th Signal Processing and Communications Applications, None

In this study, Ursino and Magosso model that includes respiration effect on cardiovascular system is implemented using Matlab. The simulations are performed to investigate the effects of respiration rate, tidal volume and expiration-inspiration time ratio on heart rate variability (HRV) signals. Power spectral density (PSD) of HRV signals that are obtained from model simulation was determined by periodogram and Yule-Walker ...


Modelling Plethysmogram Dynamics based on Baroreflex under Higher Cerebral Influences

[{u'author_order': 1, u'affiliation': u'CCI, Tokyo 141-0001, Japan. phone: 03-57951523; fax: 03-57951522; e-mail: t-miao@tokyo.cci-web.co.jp', u'full_name': u'Tiejun Miao'}, {u'author_order': 2, u'affiliation': u'Nissan Motor Co., Ltd, Kanagawa 237-8523, Japan. e-mail: o-shimoyama@mail.nissan.co.jp', u'full_name': u'Osamu Shimoyama'}, {u'author_order': 3, u'affiliation': u'Member, IEEE, Department of Integrated Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan. e-mail: oyama@kwansei.ac.jp', u'full_name': u'Mayumi Oyama-Higa'}] 2006 IEEE International Conference on Systems, Man and Cybernetics, None

A model on baroreflex controlled cardiovascular system was proposed by taking into account of influences of higher cerebral center. In addition to abilities of the model to account for observed phenomena, such as RSA, MWSA, and the other baroreflex oscillations, our model was the first one numerically showing, in plausible physiological ranges, the emergence of chaotic dynamics of plethysmograms observed ...


Modeling and control of the heart left ventricle supported with a rotary assist device

[{u'author_order': 1, u'affiliation': u'School of EECS, University of Central Florida, Orlando, 32816, USA', u'full_name': u'Marwan A. Simaan'}] 2008 47th IEEE Conference on Decision and Control, None

A rotary left ventricular assist device (RLVAD) is a mechanical pump implanted in patients with congestive heart failure to assist their left ventricle in pumping blood through the circulatory system. This blood pump is controlled by varying the rotor speed to adjust the amount of blood flow pumped into the circulatory system. If the patient is in a health care ...


Analysis of the total surgical cardiac denervation by computer simulation

[{u'author_order': 1, u'affiliation': u'Inst. of Biomed. Eng., Bogazici Univ., Istanbul, Turkey', u'full_name': u'F. Karaaslan'}, {u'author_order': 2, u'full_name': u'Y. Denizhan'}, {u'author_order': 3, u'full_name': u'A. Kayserilioglu'}, {u'author_order': 4, u'full_name': u'H. O. Gulcur'}] 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, None

In this paper a new model for studying cardio-renal reflex dynamics has been introduced. Such models are important since by understanding cardio-renal dynamics well, better total artificial heart (TAH) implants may be designed and/or better drug treatment plans may be developed for helping TAH patients. The model introduced combines relevant parts of the two cardiovascular system models developed previously by ...


More Xplore Articles

Educational Resources on Cardiovascular system

Back to Top

eLearning

No eLearning Articles are currently tagged "Cardiovascular system"

IEEE-USA E-Books

  • Parsimonious Modeling of Biomedical Signals and Systems: Applications to the Cardiovascular System

    This chapter contains sections titled: * Introduction * Polynomial Expansion Models * Model Selection * Subband Decomposition * Application to Cardiovascular System Modeling * Conclusions This chapter contains sections titled: * References

  • Frequency Domain Characterization of Signals and Systems

    This chapter investigates the frequency-domain characteristics of a few biomedical signals and the corresponding physiological systems, with particular attention to the phonocardiogram (PCG) and the cardiovascular system. Frequency-domain analysis via power spectral density (PSD) and parameters derived from PSDs can enable one to view the signal from a different perspective than the time domain. Certain signals such as the PCG and electroencephalogram may not lend themselves to easy interpretation in the time domain and, therefore, may benefit from a move to the frequency domain. PSDs and their parameters facilitate investigation of the behavior of physiological systems in terms of rhythms, resonance, and parameters that could be related to the physical characteristics of anatomical entities (for example, the loss of elasticity of the myocardial muscles due to ischemia or infarction, the extent of aortic valvular stenosis, or the extent of calcification and stiffness of bioprosthetic valves). Pathological states may also be derived or simulated by modifying the spectral parameters or representations of the corresponding normal physiological states and signals. The design of biomedical signal analysis techniques requires a thorough understanding of the characteristics and properties of the biomedical systems behind the signals, in addition to detailed knowledge of mathematical principles, computer techniques, and digital signal processing algorithms.

  • Introduction to Biomedical Engineering:Biomechanics and Bioelectricity

    Intended as an introduction to the field of biomedical engineering, this book covers the topics of biomechanics (Part I) and bioelectricity (Part II). Each chapter emphasizes a fundamental principle or law, such as Darcy's Law, Poiseuille's Law, Hooke's Law, Starling's Law, levers, and work in the area of fluid, solid, and cardiovascular biomechanics. In addition, electrical laws and analysis tools are introduced, including Ohm's Law, Kirchhoff's Laws, Coulomb's Law, capacitors, and the fluid/electrical analogy. Culminating the electrical portion are chapters covering Nernst and membrane potentials and Fourier transforms. Examples are solved throughout the book and problems with answers are given at the end of each chapter. A semester-long Major Project that models the human systemic cardiovascular system, utilizing both a Matlab numerical simulation and an electrical analog circuit, ties many of the book's concepts together. Table of Contents: Ohm's Law: Current, Voltage and Resistance / Kirchhoff's Voltage and Current Laws: Circuit Analysis / Operational Amplifiers / Coulomb's Law, Capacitors and the Fluid/Electrical Analogy / Series and Parallel Combinations / Thevenin Equivalent Circuits / Nernst Potential: Cell Membrane Equivalent Circuit / Fourier Transforms: Alternating Currents (AC)

  • Introduction to Biomedical Engineering:Biomechanics and Bioelectricity, Part II

    Intended as an introduction to the field of biomedical engineering, this book covers the topics of biomechanics (Part I) and bioelectricity (Part II). Each chapter emphasizes a fundamental principle or law, such as Darcy's Law, Poiseuille's Law, Hooke's Law, Starling's Law, levers, and work in the area of fluid, solid, and cardiovascular biomechanics. In addition, electrical laws and analysis tools are introduced, including Ohm's Law, Kirchhoff's Laws, Coulomb's Law, capacitors, and the fluid/electrical analogy. Culminating the electrical portion are chapters covering Nernst and membrane potentials and Fourier transforms. Examples are solved throughout the book and problems with answers are given at the end of each chapter. A semester-long Major Project that models the human systemic cardiovascular system, utilizing both a Matlab numerical simulation and an electrical analog circuit, ties many of the book's concepts together.

  • Fundamentals of Biomedical Transport Processes

    Transport processes represent important life-sustaining elements in all humans. These include mass transfer processes, including gas exchange in the lungs, transport across capillaries and alveoli, transport across the kidneys, and transport across cell membranes. These mass transfer processes affect how oxygen and carbon dioxide are exchanged in your bloodstream, how metabolic waste products are removed from your blood, how nutrients are transported to tissues, and how all cells function throughout the body. A discussion of kidney dialysis and gas exchange mechanisms is included. Another element in biomedical transport processes is that of momentum transport and fluid flow. This describes how blood is propelled from the heart and throughout the cardiovascular system, how blood elements affect the body, including gas exchange, infection control, clotting of blood, and blood flow resistance, which affects cardiac work. A discussion of the measurement of the blood resistance to flow (vi cosity), blood flow, and pressure is also included. A third element in transport processes in the human body is that of heat transfer, including heat transfer inside the body towards the periphery as well as heat transfer from the body to the environment. A discussion of temperature measurements and body protection in extreme heat conditions is also included. Table of Contents: Biomedical Mass Transport / Biofluid Mechanics and Momentum Transport / Biomedical Heat Transport

  • Selected Applications

    This chapter contains sections titled: * Neurosensory Systems * Cardiovascular System * Renal System * Metabolic-Endocrine System

  • Nonlinear Deterministic Behavior in Blood Pressure Control

    This chapter contains sections titled: * Introduction * Chaos in the Cardiovascular System * Carotid Baroreflex and Chaotic Behavior * Conclusions This chapter contains sections titled: * References



Standards related to Cardiovascular system

Back to Top

Health Informatics - Personal Health Device Communication - Part 10441: Device Specialization - Cardiovascular Fitness and Activity Monitor

Within the context of the ISO/IEEE 11073 family of standards for device communication, this standard establishes a normative definition of the communication between personal cardiovascular fitness and activity monitoring devices and managers (e.g. cell phones, personal computers, personal health appliances, set top boxes) in a manner that enables plug-and-play interoperability. It leverages appropriate portions of existing standards including ISO/IEEE 11073 ...



Jobs related to Cardiovascular system

Back to Top