Conferences related to Cardiovascular Engineering

Back to Top

2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invited sessions of the latest significant findings and developments in all the major fields of biomedical engineering. Submitted papers will be peer reviewed. Accepted high quality papers will be presented in oral and poster sessions, will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE.

  • 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The conference will cover diverse topics ranging from biomedical engineering to healthcare technologies to medical and clinical applications. The conference program will consist of invited plenary lectures, symposia, workshops, invited sessions and oral and poster sessions of unsolicited contributions. All papers will be peer reviewed and accepted papers of up to 4 pages will appear in the Conference Proceedings and be indexed by IEEE Xplore and Medline/PubMed.

  • 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The conference program will consist of plenary lectures, symposia, workshops and invited sessions of the latest significant findings and developments in all the major fields of biomedical engineering. Submitted papers will be peer reviewed. Accepted high quality papers will be presented in oral and poster sessions, will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE.

  • 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The Annual International Conference of the IEEE Engineering in Medicine and Biology Society covers a broad spectrum of topics from biomedical engineering and physics to medical and clinical applications. The conference program will consist of invited plenary lectures, symposia, workshops, invited sessions, oral and poster sessions of unsolicited contributions. All papers will be peer reviewed and accepted papers of up to 4 pages will appear in the Conference Proceedings and be indexed by PubMed and EI. Prop

  • 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The annual conference of EMBS averages 2000 attendees from over 50 countries. The scope of the conference is general in nature to focus on the interdisciplinary fields of biomedical engineering. Themes included but not limited to are: Imaging, Biosignals, Biorobotics, Bioinstrumentation, Neural, Rehabilitation, Bioinformatics, Healthcare IT, Medical Devices, etc

  • 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The annual conference of EMBS averages 2000 attendees from over 50 countries. The scope of the conference is general in nature to focus on the interdisciplinary fields of biomedical engineering. Themes included but not limited to are: Imaging, Biosignals, Biorobotics, Bioinstrumentation, Neural, Rehabilitation, Bioinformatics, Healthcare IT, Medical Devices, etc.

  • 2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The annual conference of EMBS averages 2000 attendees from over 50 countries. The scope of the conference is general in nature to focus on the interdisciplinary fields of biomedical engineering. Themes included but not limited to are: Imaging, Biosignals, Biorobotics, Bioinstrumentation, Neural, Rehabilitation, Bioinformatics, Healthcare IT, Medical Devices, etc

  • 2009 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The annual conference of EMBS averages 2000 attendees from over 50 countries. The scope of the conference is general in nature to focus on the interdisciplinary fields of biomedical engineering. Themes included but not limited to are: Imaging, Biosignals, Biorobotics, Bioinstrumentation, Neural, Rehabilitation, Bioinformatics, Healthcare IT, Medical Devices, etc

  • 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The general theme of EMBC'08 is "Personalized Healthcare through Technology", covering a broad spectrum of topics from biomedical and clinical engineering and physics to medical and clinical applications. Transfer of research results from academia to industry will also be a focus of the conference.


2012 6th International Conference on Bioinformatics and Biomedical Engineering (iCBBE)

Bioinformatics, Computational Biology, Biomedical Engineering


2007 IEEE Dallas Engineering in Medicine and Biology Workshop (DEMBS)

The workshop will provide a forum for and welcomes original technical papers on the engineering applications towards advancement of life and health science systems.



Periodicals related to Cardiovascular Engineering

Back to Top

Biomedical Engineering, IEEE Reviews in

The IEEE Reviews in Biomedical Engineering will review the state-of-the-art and trends in the emerging field of biomedical engineering. This includes scholarly works, ranging from historic and modern development in biomedical engineering to the life sciences and medicine enabled by technologies covered by the various IEEE societies.


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Engineering in Medicine and Biology Magazine, IEEE

Both general and technical articles on current technologies and methods used in biomedical and clinical engineering; societal implications of medical technologies; current news items; book reviews; patent descriptions; and correspondence. Special interest departments, students, law, clinical engineering, ethics, new products, society news, historical features and government.


Spectrum, IEEE

IEEE Spectrum Magazine, the flagship publication of the IEEE, explores the development, applications and implications of new technologies. It anticipates trends in engineering, science, and technology, and provides a forum for understanding, discussion and leadership in these areas. IEEE Spectrum is the world's leading engineering and scientific magazine. Read by over 300,000 engineers worldwide, Spectrum provides international coverage of all ...




Xplore Articles related to Cardiovascular Engineering

Back to Top

In the Spotlight: Cardiovascular Engineering

Natalia Trayanova IEEE Reviews in Biomedical Engineering, 2011

In this paper, a computational approach for predicting the effects of anti- arrhythmic therapy, which was informed and validated with experimental data that defined key measurable parameters necessary to simulate the interaction kinetics of the anti-arrhythmic drugs flecainide and lidocaine with cardiac sodium channels.


Characteristics of wireless technology for healthcare applications: An overview

Dolwin Ching Ching Kho; Ahmad 'Athif Mohd Faudzi; Dyah Ekashanti Octorina Dewi; Eko Supriyanto Biomedical Engineering and Sciences (IECBES), 2014 IEEE Conference on, 2014

The application of wireless technology in healthcare is increasing, not only it enhances the quality of patient care and patient mobility, but also it leads to accurate clinical decisions making. However, the electromagnetic energy emitted by the wireless transmitter devices may affects the operation of the medical equipment, especially those in close proximity with one another. In this study, we ...


Celebrating 60th Anniversary of TBME [Special issue editorial]

Bin He IEEE Transactions on Biomedical Engineering, 2014

In this special issue, celebrating TBME's 60th anniversary, we have invited 20 leading groups in biomedical engineering research to contribute review articles. Each article reviews state of the art and trends in an area of biomedical engineering research in which the authors have made important original contributions. Due to limited space, it is not our intention to cover all areas ...


On-board touch screen graphical interface design for SoC-based arrhythmia detector

Wan Yong Chia; Tze Weng Ow; Norhafizah Ramli; Suhaila Isaak; Yuan Wen Hau Electronic Design (ICED), 2014 2nd International Conference on, 2014

Heart monitoring system is a device to carry out electrocardiogram (ECG) test. It can diagnose human's heart either in normal or abnormal condition based on ECG analysis. However, most of the current ECG device is bulky, expensive and lack of a user-friendly graphical user interface (GUI) for user interaction. This paper describes an on-board GUI design based on capacitive touch-screen ...


Relative residence time and oscillatory shear index of non-Newtonian flow models in aorta

Johannes V. Soulis; Olga P. Lampri; Dimitrios K. Fytanidis; George D. Giannoglou 2011 10th International Workshop on Biomedical Engineering, 2011

Four molecular Non-Newtonian viscosity models plus the Newtonian one were analyzed for the normal human aorta under oscillating flow via: molecular viscosity, time Average Wall Shear Stress (AWSS), Oscillatory Shear Index (OSI) and Relative Residence Time (RRT). The capabilities of the applied non- Newtonian law models appear at low strain rates. The Newtonian blood flow treatment is considered to be ...


More Xplore Articles

Educational Resources on Cardiovascular Engineering

Back to Top

eLearning

In the Spotlight: Cardiovascular Engineering

Natalia Trayanova IEEE Reviews in Biomedical Engineering, 2011

In this paper, a computational approach for predicting the effects of anti- arrhythmic therapy, which was informed and validated with experimental data that defined key measurable parameters necessary to simulate the interaction kinetics of the anti-arrhythmic drugs flecainide and lidocaine with cardiac sodium channels.


Characteristics of wireless technology for healthcare applications: An overview

Dolwin Ching Ching Kho; Ahmad 'Athif Mohd Faudzi; Dyah Ekashanti Octorina Dewi; Eko Supriyanto Biomedical Engineering and Sciences (IECBES), 2014 IEEE Conference on, 2014

The application of wireless technology in healthcare is increasing, not only it enhances the quality of patient care and patient mobility, but also it leads to accurate clinical decisions making. However, the electromagnetic energy emitted by the wireless transmitter devices may affects the operation of the medical equipment, especially those in close proximity with one another. In this study, we ...


Celebrating 60th Anniversary of TBME [Special issue editorial]

Bin He IEEE Transactions on Biomedical Engineering, 2014

In this special issue, celebrating TBME's 60th anniversary, we have invited 20 leading groups in biomedical engineering research to contribute review articles. Each article reviews state of the art and trends in an area of biomedical engineering research in which the authors have made important original contributions. Due to limited space, it is not our intention to cover all areas ...


On-board touch screen graphical interface design for SoC-based arrhythmia detector

Wan Yong Chia; Tze Weng Ow; Norhafizah Ramli; Suhaila Isaak; Yuan Wen Hau Electronic Design (ICED), 2014 2nd International Conference on, 2014

Heart monitoring system is a device to carry out electrocardiogram (ECG) test. It can diagnose human's heart either in normal or abnormal condition based on ECG analysis. However, most of the current ECG device is bulky, expensive and lack of a user-friendly graphical user interface (GUI) for user interaction. This paper describes an on-board GUI design based on capacitive touch-screen ...


Relative residence time and oscillatory shear index of non-Newtonian flow models in aorta

Johannes V. Soulis; Olga P. Lampri; Dimitrios K. Fytanidis; George D. Giannoglou 2011 10th International Workshop on Biomedical Engineering, 2011

Four molecular Non-Newtonian viscosity models plus the Newtonian one were analyzed for the normal human aorta under oscillating flow via: molecular viscosity, time Average Wall Shear Stress (AWSS), Oscillatory Shear Index (OSI) and Relative Residence Time (RRT). The capabilities of the applied non- Newtonian law models appear at low strain rates. The Newtonian blood flow treatment is considered to be ...


More eLearning Resources

IEEE.tv Videos

No IEEE.tv Videos are currently tagged "Cardiovascular Engineering"

IEEE-USA E-Books

  • Index

    A practical approach to obtaining nonlinear dynamic models from stimulus- response data Nonlinear modeling of physiological systems from stimulus-response data is a long-standing problem that has substantial implications for many scientific fields and associated technologies. These disciplines include biomedical engineering, signal processing, neural networks, medical imaging, and robotics and automation. Addressing the needs of a broad spectrum of scientific and engineering researchers, this book presents practicable, yet mathematically rigorous methodologies for constructing dynamic models of physiological systems. Nonlinear Dynamic Modeling of Physiological Systems provides the most comprehensive treatment of the subject to date. Starting with the mathematical background upon which these methodologies are built, the book presents the methodologies that have been developed and used over the past thirty years. The text discusses implementation and computational issues and gives il ustrative examples using both synthetic and experimental data. The author discusses the various modeling approaches–nonparametric, including the Volterra and Wiener models; parametric; modular; and connectionist–and clearly identifies their comparative advantages and disadvantages along with the key criteria that must guide successful practical application. Selected applications covered include neural and sensory systems, cardiovascular and renal systems, and endocrine and metabolic systems. This lucid and comprehensive text is a valuable reference and guide for the community of scientists and engineers who wish to develop and apply the skills of nonlinear modeling to physiological systems.

  • No title

    Cardiac tissue engineering aims at repairing damaged heart muscle and producing human cardiac tissues for application in drug toxicity studies. This book offers a comprehensive overview of the cardiac tissue engineering strategies, including presenting and discussing the various concepts in use, research directions and applications. Essential basic information on the major components in cardiac tissue engineering, namely cell sources and biomaterials, is firstly presented to the readers, followed by a detailed description of their implementation in different strategies, broadly divided to cellular and acellular ones. In cellular approaches, the biomaterials are used to increase cell retention after implantation or as scaffolds when bioengineering the cardiac patch, in vitro. In acellular approaches, the biomaterials are used as ECM replacement for damaged cardiac ECM after MI, or, in combination with growth factors, the biomaterials assume an additional function as a depot for prolong d factor activity for the effective recruitment of repairing cells. The book also presents technological innovations aimed to improve the quality of the cardiac patches, such as bioreactor applications, stimulation patterns and prevascularization. This book could be of interest not only from an educational perspective (i.e. for graduate students), but also for researchers and medical professionals, to offer them fresh views on novel and powerful treatment strategies. We hope that the reader will find a broad spectrum of ideas and possibilities described in this book both interesting and convincing. Table of Contents: Introduction / The Heart: Structure, Cardiovascular Diseases, and Regeneration / Cell Sources for Cardiac Tissue Engineering / Biomaterials: Polymers, Scaffolds, and Basic Design Criteria / Biomaterials as Vehicles for Stem Cell Delivery and Retention in the Infarct / Bioengineering of Cardiac Patches, In Vitro / Perfusion Bioreactors and Stimulation Patterns in Cardiac T ssue Engineering / Vascularization of Cardiac Patches / Acellular Biomaterials for Cardiac Repair / Biomaterial-based Controlled Delivery of Bioactive Molecules for Myocardial Regeneration

  • No title

    User engagement refers to the quality of the user experience that emphasizes the positive aspects of interacting with an online application and, in particular, the desire to use that application longer and repeatedly. User engagement is a key concept in the design of online applications (whether for desktop, tablet or mobile), motivated by the observation that successful applications are not just used, but are engaged with. Users invest time, attention, and emotion in their use of technology, and seek to satisfy pragmatic and hedonic needs. Measurement is critical for evaluating whether online applications are able to successfully engage users, and may inform the design of and use of applications. User engagement is a multifaceted, complex phenomenon; this gives rise to a number of potential measurement approaches. Common ways to evaluate user engagement include using self-report measures, e.g., questionnaires; observational methods, e.g. facial expression analysis, speech analysis; n uro-physiological signal processing methods, e.g., respiratory and cardiovascular accelerations and decelerations, muscle spasms; and web analytics, e.g., number of site visits, click depth. These methods represent various trade-offs in terms of the setting (laboratory versus ``in the wild''), object of measurement (user behaviour, affect or cognition) and scale of data collected. For instance, small-scale user studies are deep and rich, but limited in terms of generalizability, whereas large-scale web analytic studies are powerful but negate users' motivation and context. The focus of this book is how user engagement is currently being measured and various considerations for its measurement. Our goal is to leave readers with an appreciation of the various ways in which to measure user engagement, and their associated strengths and weaknesses. We emphasize the multifaceted nature of user engagement and the unique contextual constraints that come to bear upon attempts to measure eng gement in different settings, and across different user groups and web domains. At the same time, this book advocates for the development of ``good'' measures and good measurement practices that will advance the study of user engagement and improve our understanding of this construct, which has become so vital in our wired world. Table of Contents: Preface / Acknowledgments / Introduction and Scope / Approaches Based on Self-Report Methods / Approaches Based on Physiological Measurements / Approaches Based on Web Analytics / Beyond Desktop, Single Site, and Single Task / Enhancing the Rigor of User Engagement Methods and Measures / Conclusions and Future Research Directions / Bibliography / Authors' Biographies / Index

  • Appendix IV: Stationarity, Ergodicity, and Autocorrelation Functions of Random Processes

    A practical approach to obtaining nonlinear dynamic models from stimulus- response data Nonlinear modeling of physiological systems from stimulus-response data is a long-standing problem that has substantial implications for many scientific fields and associated technologies. These disciplines include biomedical engineering, signal processing, neural networks, medical imaging, and robotics and automation. Addressing the needs of a broad spectrum of scientific and engineering researchers, this book presents practicable, yet mathematically rigorous methodologies for constructing dynamic models of physiological systems. Nonlinear Dynamic Modeling of Physiological Systems provides the most comprehensive treatment of the subject to date. Starting with the mathematical background upon which these methodologies are built, the book presents the methodologies that have been developed and used over the past thirty years. The text discusses implementation and computational issues and gives il ustrative examples using both synthetic and experimental data. The author discusses the various modeling approaches–nonparametric, including the Volterra and Wiener models; parametric; modular; and connectionist–and clearly identifies their comparative advantages and disadvantages along with the key criteria that must guide successful practical application. Selected applications covered include neural and sensory systems, cardiovascular and renal systems, and endocrine and metabolic systems. This lucid and comprehensive text is a valuable reference and guide for the community of scientists and engineers who wish to develop and apply the skills of nonlinear modeling to physiological systems.

  • Index

    Featuring current contributions by experts in signal processing and biomedical engineering, this book introduces the concepts, recent advances, and implementations of nonlinear dynamic analysis methods. Together with Volume I in this series, this book provides comprehensive coverage of nonlinear signal and image processing techniques. Nonlinear Biomedical Signal Processing: Volume II combines analytical and biological expertise in the original mathematical simulation and modeling of physiological systems. Detailed discussions of the analysis of steady-state and dynamic systems, discrete-time system theory, and discrete modeling of continuous-time systems are provided. Biomedical examples include the analysis of the respiratory control system, the dynamics of cardiac muscle and the cardiorespiratory function, and neural firing patterns in auditory and vision systems. Examples include relevant MATLAB® and Pascal programs. Topics covered include: Nonlinear dynamics Behavior and estimation Modeling of biomedical signals and systems Heart rate variability measures, models, and signal assessments Origin of chaos in cardiovascular and gastric myoelectrical activity Measurement of spatio-temporal dynamics of human epileptic seizures A valuable reference book for medical researchers, medical faculty, and advanced graduate students, it is also essential reading for practicing biomedical engineers. Nonlinear Biomedical Signal Processing, Volume II is an excellent companion to Dr. Akay's Nonlinear Biomedical Signal Processing, Volume I: Fuzzy Logic, Neural Networks, and New Algorithms.

  • Appendix I: Function Expansions

    A practical approach to obtaining nonlinear dynamic models from stimulus- response data Nonlinear modeling of physiological systems from stimulus-response data is a long-standing problem that has substantial implications for many scientific fields and associated technologies. These disciplines include biomedical engineering, signal processing, neural networks, medical imaging, and robotics and automation. Addressing the needs of a broad spectrum of scientific and engineering researchers, this book presents practicable, yet mathematically rigorous methodologies for constructing dynamic models of physiological systems. Nonlinear Dynamic Modeling of Physiological Systems provides the most comprehensive treatment of the subject to date. Starting with the mathematical background upon which these methodologies are built, the book presents the methodologies that have been developed and used over the past thirty years. The text discusses implementation and computational issues and gives il ustrative examples using both synthetic and experimental data. The author discusses the various modeling approaches–nonparametric, including the Volterra and Wiener models; parametric; modular; and connectionist–and clearly identifies their comparative advantages and disadvantages along with the key criteria that must guide successful practical application. Selected applications covered include neural and sensory systems, cardiovascular and renal systems, and endocrine and metabolic systems. This lucid and comprehensive text is a valuable reference and guide for the community of scientists and engineers who wish to develop and apply the skills of nonlinear modeling to physiological systems.

  • References

    A practical approach to obtaining nonlinear dynamic models from stimulus- response data Nonlinear modeling of physiological systems from stimulus-response data is a long-standing problem that has substantial implications for many scientific fields and associated technologies. These disciplines include biomedical engineering, signal processing, neural networks, medical imaging, and robotics and automation. Addressing the needs of a broad spectrum of scientific and engineering researchers, this book presents practicable, yet mathematically rigorous methodologies for constructing dynamic models of physiological systems. Nonlinear Dynamic Modeling of Physiological Systems provides the most comprehensive treatment of the subject to date. Starting with the mathematical background upon which these methodologies are built, the book presents the methodologies that have been developed and used over the past thirty years. The text discusses implementation and computational issues and gives il ustrative examples using both synthetic and experimental data. The author discusses the various modeling approaches–nonparametric, including the Volterra and Wiener models; parametric; modular; and connectionist–and clearly identifies their comparative advantages and disadvantages along with the key criteria that must guide successful practical application. Selected applications covered include neural and sensory systems, cardiovascular and renal systems, and endocrine and metabolic systems. This lucid and comprehensive text is a valuable reference and guide for the community of scientists and engineers who wish to develop and apply the skills of nonlinear modeling to physiological systems.

  • No title

    Dental caries, periodontitis, tooth loss, and bone resorption are considered prevalent health problems that have direct affect on the quality of life. While, advances in stem cell biology and biotechnology have sparked hope for devastating maladies, such as diabetes, cardiovascular diseases, etc., it also provides a strategy of regenerative therapy for dental tissues. From the prospective of tissue engineering, it is of utmost importance to understand and emulate the complex cell interactions that make up a tissue or organ. Unlike other tissues in the body, dental tissues are unique in their development, function, and even in their maintenance throughout life. The harmonized stimulations of biology and mechanical regulators to promote cellular activities have matured our understanding of the value of regenerative therapy of dental tissue versus the reparative treatment. In this book, we review the current knowledge available to regenerate alveolar bone, periodontal structure, and pulp dentin complex. The book provides researchers with detailed information about development and functional characteristics of the dental unit with detailed protocols covering a comprehensive range of various approaches to engineer dental tissues: to use isolated cells or cell substitutes as cellular replacement, to use acellular biomaterials capable of inducing tissue regeneration, and/or to use a combination of cells, biomaterial and growth factors. We are well aware, with the concept changes in the field toward in-vitro biomimetics of in-vivo tissue development. The theoretical frame work integrating these concepts of developmental biology and developmental engineering is yet to be emphasized and implemented. Until this happens, we consider this book of regenerative dentistry as a call for scientists to achieve, researchers to innovate, practitioners to apply, and students to learn the art and science of regenerative therapy in dentistry. Table of Contents: Introduction to Regenerativ Dentistry / Tissue Engineering Alveolar Bone / Tissue Engineering of the Periodontal Tissues / Dynamics for Pulp-Dentin Tissue Engineering in Operative Dentistry

  • About the Editor

    Featuring current contributions by experts in signal processing and biomedical engineering, this book introduces the concepts, recent advances, and implementations of nonlinear dynamic analysis methods. Together with Volume I in this series, this book provides comprehensive coverage of nonlinear signal and image processing techniques. Nonlinear Biomedical Signal Processing: Volume II combines analytical and biological expertise in the original mathematical simulation and modeling of physiological systems. Detailed discussions of the analysis of steady-state and dynamic systems, discrete-time system theory, and discrete modeling of continuous-time systems are provided. Biomedical examples include the analysis of the respiratory control system, the dynamics of cardiac muscle and the cardiorespiratory function, and neural firing patterns in auditory and vision systems. Examples include relevant MATLAB® and Pascal programs. Topics covered include: Nonlinear dynamics Behavior and estimation Modeling of biomedical signals and systems Heart rate variability measures, models, and signal assessments Origin of chaos in cardiovascular and gastric myoelectrical activity Measurement of spatio-temporal dynamics of human epileptic seizures A valuable reference book for medical researchers, medical faculty, and advanced graduate students, it is also essential reading for practicing biomedical engineers. Nonlinear Biomedical Signal Processing, Volume II is an excellent companion to Dr. Akay's Nonlinear Biomedical Signal Processing, Volume I: Fuzzy Logic, Neural Networks, and New Algorithms.

  • Prologue

    A practical approach to obtaining nonlinear dynamic models from stimulus- response data Nonlinear modeling of physiological systems from stimulus-response data is a long-standing problem that has substantial implications for many scientific fields and associated technologies. These disciplines include biomedical engineering, signal processing, neural networks, medical imaging, and robotics and automation. Addressing the needs of a broad spectrum of scientific and engineering researchers, this book presents practicable, yet mathematically rigorous methodologies for constructing dynamic models of physiological systems. Nonlinear Dynamic Modeling of Physiological Systems provides the most comprehensive treatment of the subject to date. Starting with the mathematical background upon which these methodologies are built, the book presents the methodologies that have been developed and used over the past thirty years. The text discusses implementation and computational issues and gives il ustrative examples using both synthetic and experimental data. The author discusses the various modeling approaches–nonparametric, including the Volterra and Wiener models; parametric; modular; and connectionist–and clearly identifies their comparative advantages and disadvantages along with the key criteria that must guide successful practical application. Selected applications covered include neural and sensory systems, cardiovascular and renal systems, and endocrine and metabolic systems. This lucid and comprehensive text is a valuable reference and guide for the community of scientists and engineers who wish to develop and apply the skills of nonlinear modeling to physiological systems.



Standards related to Cardiovascular Engineering

Back to Top

No standards are currently tagged "Cardiovascular Engineering"


Jobs related to Cardiovascular Engineering

Back to Top