Conferences related to Ocean Remote Sensing

Back to Top

OCEANS 2016

The Marine Technology Scociety and the Oceanic Engineering Society of the IEEE cosponor a joint annual conference and exposition on ocean science, engineering, and policy. The OCEANS conference covers four days. One day for tutorials and three for approx. 500 technical papers and 150 -200 exhibits.

  • OCEANS 2015 - MTS/IEEE Washington

    The Marine Technology Scociety and the Oceanic Engineering Society of the IEEE cosponor a joint annual conference and exposition on ocean science, engineering, and policy. The OCEANS conference covers four days. One day for tutorials and three for approx. 450 technical papers and 150-200 exhibits.

  • OCEANS 2014

    The OCEANS conference covers four days. One day for tutorials and three for approx. 450 technical papers and 150-200 exhibits.

  • OCEANS 2013

    Three days of 8-10 tracks of technical sessions (400-450 papers) and concurent exhibition (150-250 exhibitors)

  • OCEANS 2012

    Ocean related technology. Tutorials and three days of technical sessions and exhibits. 8-12 parallel technical tracks.

  • OCEANS 2011

    The Marine Technology Society and the Oceanic Engineering Scociety of the IEEE cosponsor a joint annual conference and exposition on ocean science engineering, and policy.

  • OCEANS 2010

    The Marine Technology Society and the Oceanic Engineering Scociety of the IEEE cosponsor a joint annual conference and exposition on ocean science engineering, and policy.

  • OCEANS 2009

  • OCEANS 2008

    The Marine Technology Society (MTS) and the Oceanic Engineering Society (OES) of the Institute of Electrical and Electronic Engineers (IEEE) cosponsor a joint conference and exposition on ocean science, engineering, education, and policy. Held annually in the fall, it has become a focal point for the ocean and marine community to meet, learn, and exhibit products and services. The conference includes technical sessions, workshops, student poster sessions, job fairs, tutorials and a large exhibit.

  • OCEANS 2007

  • OCEANS 2006


IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium

The Geoscience and Remote Sensing Society (GRSS) seeks to advance science and technology in geoscience, remote sensing and related fields using conferences, education and other resources. Its fields of interest are the theory, concepts and techniques of science and engineering as they apply to the remote sensing of the earth, oceans, atmosphere, and space, as well as the processing, interpretation and dissemination of this information.


OCEANS 2014 - TAIPEI

The OCEANS conference covers all aspects of ocean engineering from physics aspects through development and operation of undersea vehicles and equipment.

  • OCEANS 2013 - NORWAY

    Ocean related technologies. Program includes tutorials, three days of technical papers and a concurrent exhibition. Student poster competition.

  • OCEANS 2012 - YEOSU

    The OCEANS conferences covers four days with tutorials, exhibits and three days of parallel tracks that address all aspects of oceanic engineering.

  • OCEANS 2011 - SPAIN

    All Oceans related technologies.

  • OCEANS 2010 IEEE - Sydney

  • OCEANS 2009 - EUROPE

  • OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean

  • OCEANS 2007 - EUROPE

    The theme 'Marine Challenges: Coastline to Deep Sea' focuses on the significant challenges, from the shallowest waters around our coasts to the deepest subsea trenches, that face marine, subsea and oceanic engineers in their drive to understand the complexities of the world's oceans.

  • OCEANS 2006 - ASIA PACIFIC


2013 IEEE International Underwater Technology Symposium (UT)

UT13 continues a series of symposia focusing on the emerging technologies for underwater applications. The topics includes the continuous and real-time underwater observation systems, the underwater vehicles, the sensors and sensor networks for oceanic surveys, and the ocean acoustics and robotic technologies.

  • 2011 Symposium on Underwater Technology (UT) and Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC)

    This conference will feature advanced underwater technology and scientific use of submarine cables & related technologies. Suggested topics are Underwater Vehicles and Robotics, Underwater Acoustics, Bio-Sonar, Signal and Information Processing, Underwater Observation Systems, Submarine Cables and Connected Observatories, Underwater Sensors, Geo Scientific Measurement and Underwater Construction.

  • 2009 IEEE/OES 6th International Symposium on Underwater Technology (UT)

    UT2009 will provide an invaluable forum for the exchange of information between those involved in the development of underwater technology in the world.


2010 IEEE/OES South America International Symposium (ARGUS)

Ocean Observations including all types of measuring systems, analyses of information and conclusions.


More Conferences

Periodicals related to Ocean Remote Sensing

Back to Top

Geoscience and Remote Sensing Letters, IEEE

It is expected that GRS Letters will apply to a wide range of remote sensing activities looking to publish shorter, high-impact papers. Topics covered will remain within the IEEE Geoscience and Remote Sensing Societys field of interest: the theory, concepts, and techniques of science and engineering as they apply to the sensing of the earth, oceans, atmosphere, and space; and ...


Geoscience and Remote Sensing, IEEE Transactions on

Theory, concepts, and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.



Most published Xplore authors for Ocean Remote Sensing

Back to Top

Xplore Articles related to Ocean Remote Sensing

Back to Top

Application of the ICF Coherence Time Method for Ocean Remote Sensing Using Digital Communication Satellite Signals

Rashmi Shah; James L. Garrison IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014

This paper applies an ocean remote sensing method, first developed for reflected Global Navigation Satellite System (GNSS-R) signals, to reflected digital communication satellite signals. The fundamental observation is the time series of the Interferometric Complex Field (ICF) of the reflected signal. A relationship is derived between the coherence time of the ICF time series and the significant wave height (SWH) ...


First-order ocean surface cross-section for shipborne HFSWR

Junhao Xie; Minglei Sun; Zhenyuan Ji Electronics Letters, 2013

Onshore high-frequency surface wave radar (HFSWR) has been successfully deployed for early warning and ocean remote sensing. However, there remain potential gaps in ocean remote sensing for shipborne HFSWR. Based on the first-order bistatic field equation, the first-order ocean surface cross- section for shipborne HFSWR is derived, whose validity is verified by experimental results. Consequently, studies on ocean surface information ...


The First-Order High Frequency Radar Ocean Surface Cross Section for an Antenna on a Floating Platform

John Walsh; Weimin Huang; Eric Gill IEEE Transactions on Antennas and Propagation, 2010

The first-order high frequency surface wave radar (HFSWR) cross section of the ocean surface is derived for the case of the transmitting and receiving antenna being mounted on a floating, but otherwise fixed, ocean platform. It is assumed that the sway component of the platform or barge motion is responsible for observed differences in the cross section compared to that ...


IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium

Geoscience and Remote Sensing Symposium, 1996. IGARSS '96. 'Remote Sensing for a Sustainable Future.', International, 1996

The following topics were dealt with: geoscience remote sensing methods, atmospheric measurement methods, radar remote sensing techniques, ocean remote sensing, sea ice, soil process, tectonics, vegetation processes, educational initiatives, sea surface processes, lidar methods, ground-penetrating radar methods, microwave radiometry, land surface processes, hydrology, radar signal processing, agriculture


Experimental Evaluation of the Range–Doppler Coupling on HF Surface Wave Radars

Luigi Bruno; Paolo Braca; Jochen Horstmann; Michele Vespe IEEE Geoscience and Remote Sensing Letters, 2013

High-frequency surface wave radar (HFSWR) is used in oceanography to monitor surface wind waves and currents and, more recently, to detect ships in maritime surveillance. The radar accuracy is affected by range-Doppler coupling, which yields a displacement in the measured range proportional to the target radial velocity, i.e., the Doppler shift in the returned pulse. Although in oceanography this effect ...


More Xplore Articles

Educational Resources on Ocean Remote Sensing

Back to Top

eLearning

Application of the ICF Coherence Time Method for Ocean Remote Sensing Using Digital Communication Satellite Signals

Rashmi Shah; James L. Garrison IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014

This paper applies an ocean remote sensing method, first developed for reflected Global Navigation Satellite System (GNSS-R) signals, to reflected digital communication satellite signals. The fundamental observation is the time series of the Interferometric Complex Field (ICF) of the reflected signal. A relationship is derived between the coherence time of the ICF time series and the significant wave height (SWH) ...


First-order ocean surface cross-section for shipborne HFSWR

Junhao Xie; Minglei Sun; Zhenyuan Ji Electronics Letters, 2013

Onshore high-frequency surface wave radar (HFSWR) has been successfully deployed for early warning and ocean remote sensing. However, there remain potential gaps in ocean remote sensing for shipborne HFSWR. Based on the first-order bistatic field equation, the first-order ocean surface cross- section for shipborne HFSWR is derived, whose validity is verified by experimental results. Consequently, studies on ocean surface information ...


The First-Order High Frequency Radar Ocean Surface Cross Section for an Antenna on a Floating Platform

John Walsh; Weimin Huang; Eric Gill IEEE Transactions on Antennas and Propagation, 2010

The first-order high frequency surface wave radar (HFSWR) cross section of the ocean surface is derived for the case of the transmitting and receiving antenna being mounted on a floating, but otherwise fixed, ocean platform. It is assumed that the sway component of the platform or barge motion is responsible for observed differences in the cross section compared to that ...


IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium

Geoscience and Remote Sensing Symposium, 1996. IGARSS '96. 'Remote Sensing for a Sustainable Future.', International, 1996

The following topics were dealt with: geoscience remote sensing methods, atmospheric measurement methods, radar remote sensing techniques, ocean remote sensing, sea ice, soil process, tectonics, vegetation processes, educational initiatives, sea surface processes, lidar methods, ground-penetrating radar methods, microwave radiometry, land surface processes, hydrology, radar signal processing, agriculture


Experimental Evaluation of the Range–Doppler Coupling on HF Surface Wave Radars

Luigi Bruno; Paolo Braca; Jochen Horstmann; Michele Vespe IEEE Geoscience and Remote Sensing Letters, 2013

High-frequency surface wave radar (HFSWR) is used in oceanography to monitor surface wind waves and currents and, more recently, to detect ships in maritime surveillance. The radar accuracy is affected by range-Doppler coupling, which yields a displacement in the measured range proportional to the target radial velocity, i.e., the Doppler shift in the returned pulse. Although in oceanography this effect ...


More eLearning Resources

IEEE.tv Videos

No IEEE.tv Videos are currently tagged "Ocean Remote Sensing"

IEEE-USA E-Books

  • Clouds and Precipitation: Extreme Rainfall and Rain from Shallow Clouds

    This chapter reviews present knowledge on extreme precipitation and moderate rainfall from low-level clouds. Primary focus is on the statistics of precipitation characteristics rather than on a detailed description of individual case studies. First, observed variability of precipitation from low-level clouds and the existing techniques to separate different microphysical stages from remote-sensing measurements are reviewed. Over the tropical areas of Pacific and Atlantic oceans, the global distribution of shallow rainfall exhibits a "butterfly" pattern. This feature encompasses heavily precipitating regions such as the intertropical, south Pacific, and south Atlantic convergence zones (ITCZ, SPCZ, and SACZ, respectively); the northern hemispheric counterpart of SPCZ and SACZ emerges only when shallow rain is isolated. The nature of extreme precipitation varies temporally. On a timescale of about a day, extreme precipitation is associated with synoptic- scale disturbances, including a notable example known as tropical plumes or moist conveyer belt, which could give rise to extreme daily precipitation in downstream arid regions. On an hourly timescale, extreme precipitation is caused by mesoscale moisture convergence, which is so intense that it maintains a continuous overturning of saturated air. Satellite observations imply that the global distribution of extreme precipitation shows a systematic difference from the total rainfall map in terms of, for example, the contrast between land and ocean. The distribution of low-level, precipitation-related latent heating associated with warm rain coincides with the butterfly pattern. Its cohabitation and separation with the deep heating suggests that warm rain plays a role in providing a thick layer of moist static energy source to the convection, and that it is also related to the tropical plumes which cause extr eme precipitation in the semiarid west coasts of continents.

  • Rough Surface Scattering and Remote Sensing

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • Multiple Scattering Theory

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • Index

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • Transport Theory of Waves in Randomly Distributed Scatterers

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • Multiple Scattering Theory

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • About the Author

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • References

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • Scattering and Propagation of Waves in a Tenuous Distribution of Scatterers: Single Scattering Approximation

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • Introduction

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.



Standards related to Ocean Remote Sensing

Back to Top

No standards are currently tagged "Ocean Remote Sensing"


Jobs related to Ocean Remote Sensing

Back to Top