Conferences related to Ocean Remote Sensing

Back to Top

OCEANS 2016

The Marine Technology Scociety and the Oceanic Engineering Society of the IEEE cosponor a joint annual conference and exposition on ocean science, engineering, and policy. The OCEANS conference covers four days. One day for tutorials and three for approx. 500 technical papers and 150 -200 exhibits.

  • OCEANS 2015 - MTS/IEEE Washington

    The Marine Technology Scociety and the Oceanic Engineering Society of the IEEE cosponor a joint annual conference and exposition on ocean science, engineering, and policy. The OCEANS conference covers four days. One day for tutorials and three for approx. 450 technical papers and 150-200 exhibits.

  • OCEANS 2014

    The OCEANS conference covers four days. One day for tutorials and three for approx. 450 technical papers and 150-200 exhibits.

  • OCEANS 2013

    Three days of 8-10 tracks of technical sessions (400-450 papers) and concurent exhibition (150-250 exhibitors)

  • OCEANS 2012

    Ocean related technology. Tutorials and three days of technical sessions and exhibits. 8-12 parallel technical tracks.

  • OCEANS 2011

    The Marine Technology Society and the Oceanic Engineering Scociety of the IEEE cosponsor a joint annual conference and exposition on ocean science engineering, and policy.

  • OCEANS 2010

    The Marine Technology Society and the Oceanic Engineering Scociety of the IEEE cosponsor a joint annual conference and exposition on ocean science engineering, and policy.

  • OCEANS 2009

  • OCEANS 2008

    The Marine Technology Society (MTS) and the Oceanic Engineering Society (OES) of the Institute of Electrical and Electronic Engineers (IEEE) cosponsor a joint conference and exposition on ocean science, engineering, education, and policy. Held annually in the fall, it has become a focal point for the ocean and marine community to meet, learn, and exhibit products and services. The conference includes technical sessions, workshops, student poster sessions, job fairs, tutorials and a large exhibit.

  • OCEANS 2007

  • OCEANS 2006


IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium

The Geoscience and Remote Sensing Society (GRSS) seeks to advance science and technology in geoscience, remote sensing and related fields using conferences, education and other resources. Its fields of interest are the theory, concepts and techniques of science and engineering as they apply to the remote sensing of the earth, oceans, atmosphere, and space, as well as the processing, interpretation and dissemination of this information.


OCEANS 2014 - TAIPEI

The OCEANS conference covers all aspects of ocean engineering from physics aspects through development and operation of undersea vehicles and equipment.

  • OCEANS 2013 - NORWAY

    Ocean related technologies. Program includes tutorials, three days of technical papers and a concurrent exhibition. Student poster competition.

  • OCEANS 2012 - YEOSU

    The OCEANS conferences covers four days with tutorials, exhibits and three days of parallel tracks that address all aspects of oceanic engineering.

  • OCEANS 2011 - SPAIN

    All Oceans related technologies.

  • OCEANS 2010 IEEE - Sydney

  • OCEANS 2009 - EUROPE

  • OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean

  • OCEANS 2007 - EUROPE

    The theme 'Marine Challenges: Coastline to Deep Sea' focuses on the significant challenges, from the shallowest waters around our coasts to the deepest subsea trenches, that face marine, subsea and oceanic engineers in their drive to understand the complexities of the world's oceans.

  • OCEANS 2006 - ASIA PACIFIC


2013 IEEE International Underwater Technology Symposium (UT)

UT13 continues a series of symposia focusing on the emerging technologies for underwater applications. The topics includes the continuous and real-time underwater observation systems, the underwater vehicles, the sensors and sensor networks for oceanic surveys, and the ocean acoustics and robotic technologies.

  • 2011 Symposium on Underwater Technology (UT) and Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC)

    This conference will feature advanced underwater technology and scientific use of submarine cables & related technologies. Suggested topics are Underwater Vehicles and Robotics, Underwater Acoustics, Bio-Sonar, Signal and Information Processing, Underwater Observation Systems, Submarine Cables and Connected Observatories, Underwater Sensors, Geo Scientific Measurement and Underwater Construction.

  • 2009 IEEE/OES 6th International Symposium on Underwater Technology (UT)

    UT2009 will provide an invaluable forum for the exchange of information between those involved in the development of underwater technology in the world.


2010 IEEE/OES South America International Symposium (ARGUS)

Ocean Observations including all types of measuring systems, analyses of information and conclusions.


More Conferences

Periodicals related to Ocean Remote Sensing

Back to Top

Geoscience and Remote Sensing Letters, IEEE

It is expected that GRS Letters will apply to a wide range of remote sensing activities looking to publish shorter, high-impact papers. Topics covered will remain within the IEEE Geoscience and Remote Sensing Societys field of interest: the theory, concepts, and techniques of science and engineering as they apply to the sensing of the earth, oceans, atmosphere, and space; and ...


Geoscience and Remote Sensing, IEEE Transactions on

Theory, concepts, and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.



Most published Xplore authors for Ocean Remote Sensing

Back to Top

Xplore Articles related to Ocean Remote Sensing

Back to Top

Revisiting the Short-Wave Spectrum of the Sea Surface in the Light of the Weighted Curvature Approximation

Alexandra Bringer; Bertrand Chapron; Alexis Mouche; Charles-Antoine Guérin IEEE Transactions on Geoscience and Remote Sensing, 2014

Existing models for the short-wave spectrum of the sea surface are not consistent with microwave satellite data when multi-bands and multi-incidence data sets are considered. We devise a simple parametric model for the short- wave omnidirectional spectrum of the sea surface on the basis of a three-band (C, Ku, and Ka) and multi-incidence (low, moderate, and large) data set and ...


Using archived datasets for missing data interpolation in ocean remote sensing observation series

Redouane Lguensat; Pierre Tandeo; Pierre Ailliot; Bertrand Chapron; Ronan Fablet OCEANS 2016 - Shanghai, 2016

The proliferation of data coming in daily from ocean remote sensing observational networks is getting bigger and will likely to get a lot bigger. This fact makes it natural to search for methods and strategies that can make the best use of this wealth of information. In this work, we investigate the utility of historical datasets to missing data interpolation ...


Demonstration of Bistatic Radar for Ocean Remote Sensing Using Communication Satellite Signals

Rashmi Shah; James L. Garrison; Michael S. Grant IEEE Geoscience and Remote Sensing Letters, 2012

Remote sensing of ocean roughness using reflected signals from digital communication satellites is demonstrated in an airborne experiment. Transmitted data are approximated as an infinitely long sequence of random bits, which is experimentally a hypothesis confirmed for the S-band XM radio signal. On July 2, 2010, a signal recorder was flown at an altitude of 3.17 km off the coast ...


Effects of Atmospheric Stability and Wind Fetch on Microwave Sea Echoes

Yunhua Wang; Yanmin Zhang; Haihua Chen; Lixin Guo IEEE Transactions on Geoscience and Remote Sensing, 2014

The influences of atmospheric stability and wind fetch on microwave scattering from sea surfaces are presented. The equivalent neutral wind speed (ENWS) and the friction velocity (FV) above sea surface are evaluated by the similarity theory of Monin and Obukhov in combination with the Charnock relation. The numerical simulations show that atmospheric stability and wind fetch would make effects on ...


Cloud detection using probabilistic neural networks

W. D. Zhang; M. X. He; M. W. Mak IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), 2001

This paper investigates the application of a particular type of probabilistic neural networks, namely radial basis function (RBF) networks, to detecting cloud in NOAA/AVHRR images. Based on the images collected from the East China Sea, the paper compares the performance of RBF networks with that of traditional multi-layer perceptrons (MLPs). The main results show that RBF networks are able to ...


More Xplore Articles

Educational Resources on Ocean Remote Sensing

Back to Top

eLearning

Revisiting the Short-Wave Spectrum of the Sea Surface in the Light of the Weighted Curvature Approximation

Alexandra Bringer; Bertrand Chapron; Alexis Mouche; Charles-Antoine Guérin IEEE Transactions on Geoscience and Remote Sensing, 2014

Existing models for the short-wave spectrum of the sea surface are not consistent with microwave satellite data when multi-bands and multi-incidence data sets are considered. We devise a simple parametric model for the short- wave omnidirectional spectrum of the sea surface on the basis of a three-band (C, Ku, and Ka) and multi-incidence (low, moderate, and large) data set and ...


Using archived datasets for missing data interpolation in ocean remote sensing observation series

Redouane Lguensat; Pierre Tandeo; Pierre Ailliot; Bertrand Chapron; Ronan Fablet OCEANS 2016 - Shanghai, 2016

The proliferation of data coming in daily from ocean remote sensing observational networks is getting bigger and will likely to get a lot bigger. This fact makes it natural to search for methods and strategies that can make the best use of this wealth of information. In this work, we investigate the utility of historical datasets to missing data interpolation ...


Demonstration of Bistatic Radar for Ocean Remote Sensing Using Communication Satellite Signals

Rashmi Shah; James L. Garrison; Michael S. Grant IEEE Geoscience and Remote Sensing Letters, 2012

Remote sensing of ocean roughness using reflected signals from digital communication satellites is demonstrated in an airborne experiment. Transmitted data are approximated as an infinitely long sequence of random bits, which is experimentally a hypothesis confirmed for the S-band XM radio signal. On July 2, 2010, a signal recorder was flown at an altitude of 3.17 km off the coast ...


Effects of Atmospheric Stability and Wind Fetch on Microwave Sea Echoes

Yunhua Wang; Yanmin Zhang; Haihua Chen; Lixin Guo IEEE Transactions on Geoscience and Remote Sensing, 2014

The influences of atmospheric stability and wind fetch on microwave scattering from sea surfaces are presented. The equivalent neutral wind speed (ENWS) and the friction velocity (FV) above sea surface are evaluated by the similarity theory of Monin and Obukhov in combination with the Charnock relation. The numerical simulations show that atmospheric stability and wind fetch would make effects on ...


Cloud detection using probabilistic neural networks

W. D. Zhang; M. X. He; M. W. Mak IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), 2001

This paper investigates the application of a particular type of probabilistic neural networks, namely radial basis function (RBF) networks, to detecting cloud in NOAA/AVHRR images. Based on the images collected from the East China Sea, the paper compares the performance of RBF networks with that of traditional multi-layer perceptrons (MLPs). The main results show that RBF networks are able to ...


More eLearning Resources

IEEE-USA E-Books

  • Rough Surface Scattering and Remote Sensing

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • Index

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • Introduction

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • About the Author

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • Multiple Scattering Theory

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • Scattering and Propagation of Waves in a Tenuous Distribution of Scatterers: Single Scattering Approximation

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • References

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • Multiple Scattering Theory

    Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: * Wave characteristics in aerosols and hydrometeors * Optical and acoustic scattering in sea water * Scattering from biological materials * Pulse scattering and beam wave propagation in such media * Optical diffusion in tissues and blood * Transport and radiative transfer theory * Kubelka--Munk flux theory and plane-parallel problem * Multiple scattering theory * Wave fluctuations in turbulence * Strong fluctuation theory * Rough surface scattering * Remote sensing and inversion techniques * Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

  • Radar Principles

    Advances in radar system hardware and software have enabled radar systems to detect, differentiate, classify, image, and track the range, altitude, direction, or velocity of multiple moving or fixed targets simultaneously. A radar system has a receiver intended to detect the reflected electromagnetic waves, indicating an object with a different dielectric constant in the propagation direction. Doppler radar is typically used to detect moving targets, and estimate their velocity. Security systems motion detectors and door openers are common uses of Doppler radar???based motion detectors. There are two basic radar configurations based on the spatial relationship between the transmitting and receiving antennas: monostatic and bistatic. The major areas of radar application are briefly described, including military defense and weapons systems, remote monitoring of the Earth's surface, the ocean, and other planets, reconnaissance imaging, ground???penetrating radar for archeological expeditions, weather surveillance, air traffic control, and others.

  • Clouds and Precipitation: Extreme Rainfall and Rain from Shallow Clouds

    This chapter reviews present knowledge on extreme precipitation and moderate rainfall from low-level clouds. Primary focus is on the statistics of precipitation characteristics rather than on a detailed description of individual case studies. First, observed variability of precipitation from low-level clouds and the existing techniques to separate different microphysical stages from remote-sensing measurements are reviewed. Over the tropical areas of Pacific and Atlantic oceans, the global distribution of shallow rainfall exhibits a "butterfly" pattern. This feature encompasses heavily precipitating regions such as the intertropical, south Pacific, and south Atlantic convergence zones (ITCZ, SPCZ, and SACZ, respectively); the northern hemispheric counterpart of SPCZ and SACZ emerges only when shallow rain is isolated. The nature of extreme precipitation varies temporally. On a timescale of about a day, extreme precipitation is associated with synoptic- scale disturbances, including a notable example known as tropical plumes or moist conveyer belt, which could give rise to extreme daily precipitation in downstream arid regions. On an hourly timescale, extreme precipitation is caused by mesoscale moisture convergence, which is so intense that it maintains a continuous overturning of saturated air. Satellite observations imply that the global distribution of extreme precipitation shows a systematic difference from the total rainfall map in terms of, for example, the contrast between land and ocean. The distribution of low-level, precipitation-related latent heating associated with warm rain coincides with the butterfly pattern. Its cohabitation and separation with the deep heating suggests that warm rain plays a role in providing a thick layer of moist static energy source to the convection, and that it is also related to the tropical plumes which cause extr eme precipitation in the semiarid west coasts of continents.



Standards related to Ocean Remote Sensing

Back to Top

No standards are currently tagged "Ocean Remote Sensing"


Jobs related to Ocean Remote Sensing

Back to Top