Radar

View this topic in
Radar is an object-detection system which uses electromagnetic waves—specifically radio waves—to determine the range, altitude, direction, or speed of both moving and fixed objects such as aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. (Wikipedia.org)






Conferences related to Radar

Back to Top

2017 IEEE/MTT-S International Microwave Symposium - MTT 2017

The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.

  • 2029 IEEE/MTT-S International Microwave Symposium - MTT 2029

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2021 IEEE/MTT-S International Microwave Symposium - MTT 2021

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.

  • 2019 IEEE/MTT-S International Microwave Symposium - MTT 2019

    Comprehensive symposium on microwave theory and techniques including active and passive circuit components, theory and microwave systems.

  • 2018 IEEE/MTT-S International Microwave Symposium - MTT 2018

    Microwave theory and techniques, RF/microwave/millimeter-wave/terahertz circuit design and fabrication technology, radio/wireless communication.

  • 2016 IEEE/MTT-S International Microwave Symposium - MTT 2016

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2015 IEEE MTT-S International Microwave Symposium (IMS2015)

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics. The IMS includes technical sessions, both oral and interactive, worksh

  • 2014 IEEE/MTT-S International Microwave Symposium - MTT 2014

    IMS2014 will cover developments in microwave technology from nano devices to system applications. Technical paper sessions, interactive forums, plenary and panel sessions, workshops, short courses, industrial exhibits, and a wide array of other technical activities will be offered.

  • 2013 IEEE/MTT-S International Microwave Symposium - MTT 2013

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter -wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2012 IEEE/MTT-S International Microwave Symposium - MTT 2012

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2011 IEEE/MTT-S International Microwave Symposium - MTT 2011

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010

    Reports of research and development at the state-of-the-art of the theory and techniques related to the technology and applications of devices, components, circuits, modules and systems in the RF, microwave, millimeter-wave, submillimeter-wave and Terahertz ranges of the electromagnetic spectrum.

  • 2009 IEEE/MTT-S International Microwave Symposium - MTT 2009

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2008 IEEE/MTT-S International Microwave Symposium - MTT 2008

  • 2007 IEEE/MTT-S International Microwave Symposium - MTT 2007

  • 2006 IEEE/MTT-S International Microwave Symposium - MTT 2006


2015 IEEE International Radar Conference (RADAR 2015)

The scope of the IEEE 2015 International Radar Conference includes all aspects of civil and military radar. Topics range from fundamental theory to cutting-edge applications, from signal processing, modeling, simulation to hardware implementation and experimental results.

  • 2014 IEEE Radar Conference (RadarCon)

    The 2014 IEEE Radar Conference will showcase innovations and developments in radar technology. Topics will include presentations describing developments in radar systems and their implementations, phenomenology, target and clutter modeling, signal processing, component advances, etc.

  • 2013 IEEE Radar Conference (RadarCon)

    The conference theme is The Arctic The New Frontier as it presents a vast and challenging environment for which radar systems operating in a multi-sensor environment are currently being developed for deployment on space, air, ship and ground platforms and for both remote sensing of the environment and for the monitoring of human activity. It is one of the major challenges and applications being pursued in the field of radar development in Canada.

  • 2012 IEEE Radar Conference (RadarCon)

    The 2012 IEEE Radar Conference will host 400 to 600 attendees interested in innovations and developments in radar technology. The radar related topics will include presentations describing developments in radar systems and their implementations, phenomenology, target and clutter modeling, component advances, signal processing and data processing utilizing advanced algorithms. The conference will also include exhibits by vendors of radar systems, radar components, instrumentation, related software and publ

  • 2011 IEEE Radar Conference (RadarCon)

    RadarCon11 will feature topics in radar systems, technology, applications, phenomenology,modeling, & signal processing. The conference theme, In the Eye of the Storm, highlights the strong regional interest in radar for severe weather analysis and tracking. Broader implications of the theme reflect global interests such as radar's role in assessing climate change, supporting myriad defense applications, as well as issues with spectrum allocation and management.

  • 2010 IEEE International Radar Conference

    RADAR Systems, RADAR technology

  • 2009 IEEE Radar Conference

    The conference's scope is civil and military radar, including science, technology, and systems. The theme for RADAR '09 is "Radar: From Science to Systems," emphasizing scientific or observational requirements and phenomenology that lead to the systems that we in the radar community develop.

  • 2008 IEEE Radar Conference

    The 2008 IEEE Radar Conference will focus on the key aspects of radar theory and applications as listed below. Exploration of new avenues and methodologies of radar signal processing will also be encouraged. Tutorials will be held in a number of fields of radar technology. The Conference will cover all aspects of radar systems for civil, security and defense applications.

  • 2007 IEEE Radar Conference

  • 2006 IEEE Radar Conference

  • 2005 IEEE International Radar Conference

  • 2004 IEEE Radar Conference

  • 2003 IEEE Radar Conference

  • 2002 IEEE Radar Conference

  • 2001 IEEE Radar Conference

  • 2000 IEEE International Radar Conference

  • 1999 IEEE Radar Conference

  • 1998 IEEE Radar Conference

  • 1997 IEEE Radar Conference

  • 1996 IEEE Radar Conference


IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium

The Geoscience and Remote Sensing Society (GRSS) seeks to advance science and technology in geoscience, remote sensing and related fields using conferences, education and other resources. Its fields of interest are the theory, concepts and techniques of science and engineering as they apply to the remote sensing of the earth, oceans, atmosphere, and space, as well as the processing, interpretation and dissemination of this information.


2014 International Radar Conference (Radar)

Radar 2014 cover all aspects of radar systems for civil, security and defence application. Waveform design, beamforming, signal processing, Emerging applications and technologies, sub-systems technologies, Radar environment.

  • 2012 International Radar Conference (Radar)

    Radar Environment/Phenomenology, Radar Systems, Remote Sensing from Airborne/Spaceborne Systems, Waveform Design, Beamforming/Signal Processing, Emerging Applications, Advanced Sub-Systems, Computer Modelling, Simulation/Validation.

  • 2011 IEEE CIE International Conference on Radar (Radar)

    This series of successfully organized international conference on radar shows the very fruitful cooperation between IEEE AESS, IET/UK, SEE/France, EA/Australia CIE/China, and the academy societies of other countries , such as Germany, Russia, Japan, Korea and Poland. Radar 2011 is a forum of radar engineers and scientists from all over the world. The conference topics of Radar 2011 will cover all aspects of radar system for civil and defense applications.

  • 2009 International Radar Conference Radar "Surveillance for a Safer World" (RADAR 2009)

    The conference will focus on new research and developments in the field of radar techniques for both military and civil applications. Topics to be covered at Radar 2009 include: Radar Environment and Phenomenology Radar Systems Remote Sensing from Airborne or Spaceborne Systems Waveform Design, Beamforming and Signal Processing Emerging Radar Applications Emerging Technologies Advanced Sub-Systems Technologies Computer Modeling, Simulation and V

  • 2008 International Conference on Radar (Radar 2008)

    All aspects of radar systems for civil, security and defence applications. Themes include: Radar in the marine environment, Radar systems, Multistatic and netted radars, Radar subsystems, Radar techniques, processing and displays, Modelling and simulation of radar environments, Electronic attack, Electronic protection, Test and Evaluation

  • 2003 IEEE International Radar Conference


NAECON 2014 - IEEE National Aerospace and Electronics Conference

NAECON (National Aerospace and Electronics Conference) is the oldest and premier IEEE Conference presenting research in all aspects of theory and applications of avionic systems

  • NAECON 2012 - IEEE National Aerospace and Electronics Conference

    NAECON (National Aerospace and Electronics Conference) is the oldest and premier IEEE Conference presenting research in all aspects of theory, design and applications of aerospace systems and sensors.

  • NAECON 2011 - IEEE National Aerospace and Electronics Conference

    NAECON (National Aerospace and Electronics Conference) is the oldest and premier IEEE Conference presenting research in all aspects of theory, design, and applications of aerospace systems and sensors. NAECON 2011's theme is Aerospace Sensory Exploitation .

  • NAECON 2010 - IEEE National Aerospace and Electronics Conference

    NAECON is the oldest and premier IEEE Conference presenting research in all aspects of theory, design and novel devices & applications for aerospace systems, sensors and man-machine interfaces

  • NAECON 2009 - IEEE National Aerospace and Electronics Conference

    NAECON is the oldest and premier IEEE Conference presenting research in all aspects of theory, design and applications of aerospace systems and sensors


More Conferences

Periodicals related to Radar

Back to Top

Aerospace and Electronic Systems Magazine, IEEE

The IEEE Aerospace and Electronic Systems Magazine publishes articles concerned with the various aspects of systems for space, air, ocean, or ground environments.


Geoscience and Remote Sensing Letters, IEEE

It is expected that GRS Letters will apply to a wide range of remote sensing activities looking to publish shorter, high-impact papers. Topics covered will remain within the IEEE Geoscience and Remote Sensing Societys field of interest: the theory, concepts, and techniques of science and engineering as they apply to the sensing of the earth, oceans, atmosphere, and space; and ...


Geoscience and Remote Sensing, IEEE Transactions on

Theory, concepts, and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.


Microwave and Wireless Components Letters, IEEE

Published monthly with the purpose of providing fast publication of original and significant contributions relevant to all aspects of microwave/millimeter-wave technology. Emphasis is on devices, components, circuits, guided-wave structures, systems and applications covering the frequency spectrum from microwave and beyond, including submillimeter-waves and infrared.


Microwave Theory and Techniques, IEEE Transactions on

Microwave theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of microwaves.


More Periodicals


Xplore Articles related to Radar

Back to Top

A canonical problem in electromagnetic backscattering from buildings

G. Franceschetti; A. Iodice; D. Riccio IEEE Transactions on Geoscience and Remote Sensing, 2002

In this paper, a geometric and electromagnetic model of a typical element of urban structure is presented, in order to analytically evaluate in closed form its electromagnetic return to an active microwave sensor. This model can be used to understand what information on geometric and dielectric properties of a building can be extracted from microwave remote sensing data. The geometrical ...


Transmit patterns for active linear arrays with peak amplitude and radiated voltage distribution constraints

K. L. Virga; M. L. Taylor IEEE Transactions on Antennas and Propagation, 2001

Distribution functions used in array antenna design typically synthesize specified pattern characteristics without consideration for either the peak amplitude of the radiating elements or the aperture radiated power. There do exist applications, however, in which the pattern synthesis must employ such constraints. In the transmit mode of active array antennas, for example, it is desirable to radiate as much power ...


An ultrafast wide-band millimeter-wave (MMW) polarimetric radar for remote sensing applications

A. Y. Nashashibi; K. Sarabandi; P. Frantzis; R. D. De Roo; F. T. Ulaby IEEE Transactions on Geoscience and Remote Sensing, 2002

With the advent of high-frequency radio frequency (RF) circuits and components technology, millimeter-wave (MMW) radars are being proposed for a large number of military and civilian applications. Accurate and high-resolution characterization of the polarimetric radar backscatter responses of both clutter and man-made targets at MMW frequencies is essential for the development of radar systems and optimal detection and tracking algorithms. ...


95 GHZ short pulse radar

E. A. Uliana; B. S. Yaplee; N. C. Chu; M. Newkirk 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,, 1989

First Page of the Article ![](/xploreAssets/images/absImages/00578756.png)


Radiometric and geometric correction of RADARSAT-1 images acquired in alpine regions for mapping the snow water equivalent (SWE)

J. -P. Dedieu; Y. Gauthier; M. Bernier; S. Hardy; P. Vincent; Y. Durand IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), 2003

In this paper, introduced is an application of two radiometric slope correction methods on standard RADARSAT images in a mountainous environment like the Alps. Because of the highly varying topography, such corrections are needed to reduce the distortions on the backscattering coefficients when trying to monitor the snow characteristics from SAR data in alpine regions. This paper discusses the results ...


More Xplore Articles

Educational Resources on Radar

Back to Top

eLearning

A canonical problem in electromagnetic backscattering from buildings

G. Franceschetti; A. Iodice; D. Riccio IEEE Transactions on Geoscience and Remote Sensing, 2002

In this paper, a geometric and electromagnetic model of a typical element of urban structure is presented, in order to analytically evaluate in closed form its electromagnetic return to an active microwave sensor. This model can be used to understand what information on geometric and dielectric properties of a building can be extracted from microwave remote sensing data. The geometrical ...


Transmit patterns for active linear arrays with peak amplitude and radiated voltage distribution constraints

K. L. Virga; M. L. Taylor IEEE Transactions on Antennas and Propagation, 2001

Distribution functions used in array antenna design typically synthesize specified pattern characteristics without consideration for either the peak amplitude of the radiating elements or the aperture radiated power. There do exist applications, however, in which the pattern synthesis must employ such constraints. In the transmit mode of active array antennas, for example, it is desirable to radiate as much power ...


An ultrafast wide-band millimeter-wave (MMW) polarimetric radar for remote sensing applications

A. Y. Nashashibi; K. Sarabandi; P. Frantzis; R. D. De Roo; F. T. Ulaby IEEE Transactions on Geoscience and Remote Sensing, 2002

With the advent of high-frequency radio frequency (RF) circuits and components technology, millimeter-wave (MMW) radars are being proposed for a large number of military and civilian applications. Accurate and high-resolution characterization of the polarimetric radar backscatter responses of both clutter and man-made targets at MMW frequencies is essential for the development of radar systems and optimal detection and tracking algorithms. ...


95 GHZ short pulse radar

E. A. Uliana; B. S. Yaplee; N. C. Chu; M. Newkirk 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,, 1989

First Page of the Article ![](/xploreAssets/images/absImages/00578756.png)


Radiometric and geometric correction of RADARSAT-1 images acquired in alpine regions for mapping the snow water equivalent (SWE)

J. -P. Dedieu; Y. Gauthier; M. Bernier; S. Hardy; P. Vincent; Y. Durand IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), 2003

In this paper, introduced is an application of two radiometric slope correction methods on standard RADARSAT images in a mountainous environment like the Alps. Because of the highly varying topography, such corrections are needed to reduce the distortions on the backscattering coefficients when trying to monitor the snow characteristics from SAR data in alpine regions. This paper discusses the results ...


More eLearning Resources

IEEE.tv Videos

IMS 2011 Microapps - Volume Manufacturing Trends for Automotive Radar Devices
IMS 2012 Microapps - Virtual Flight Testing of Radar System Performance Daren McClearnon, Agilent EEsof
Nadav Levanon receives the IEEE Dennis J. Picard Medal for Radar Technologies and Applications - Honors Ceremony 2016
Hugh Griffiths accepts the IEEE Dennis J. Picard Medal for Radar Technologies and Applications - Honors Ceremony 2017
2013 IEEE Dennis J. Picard Medal
2014 Dennis J. Picard Medal for Radar Technologies and Applications
Green Radar State of Art: theory, practice and way ahead.
2015 IEEE Honors: IEEE Dennis J. Picard Medal for Radar Technologies and Applications - Marshall Greenspan
2011 IEEE Dennis J. Picard Medal for Radar Technologies and Applications - James M. Headrick
Young Professionals at N3XT: Bringing Together Tech Fields
2012 IEEE Honors - Dennis J. Picard Medal for Radar Technologies and Applications
A Fully Integrated 75-83GHz FMCW Synthesizer for Automotive Radar Applications with -97dBc/Hz Phase Noise at 1MHz Offset and 100GHz/mSec Maximal Chirp Rate: RFIC Industry Showcase 2017
Micro-Apps 2013: Creating and Analyzing Multi-Emitter Environment Test Signals with COTS Equipment
Co-design of Power Amplifier and Dynamic Power Supplies for Radar and Communications Transmitters
Aperture Radar Products for the Management of Land and Water - GHTC 2012 Session - Guiseppe Ruello
Group on Earth Observations(GEOSS): Technology
ICASSP 2010 - Radar Imaging of Building Interiors
MicroApps: Radar Design Flow with NI-AWR Integrated Framework (National Instruments)
Louis Scharf receives the IEEE Jack S. Kilby Signal Processing Medal - Honors Ceremony 2016
MicroApps: Simulation of Airborne, Space-Borne and Ship-Based Radar Systems with Complex Environment (Agilent EEsof)

IEEE-USA E-Books

  • Properties of Antennas

    The chapter tells readers how to use antennas by explaining their key properties. The elements of a link budget are given including path loss, polarization response, impedance mismatch loss, and noise temperature. Related topics of radar range/cross section, beam efficiency for radiometers, and antenna factor for EMC measurements are explained. Estimates of directivity from patterns bound gain. Analytical antenna models for estimates of directivity find later use. Vector effective height and reactance provide formulas for near field mutual coupling. Multipath produces fades in links and causes measurement errors.

  • Chapter 13: The Radiation Laboratory

    This chapter contains sections titled: Radar in the Battle of Britain, The Tizard Mission, The MIT Rad Lab Is Established, Getting U.S. Radar into Combat Use, Other EE Staff, Rad Lab Disbands, The MIT Radar School

  • Index

    Learn about the revolutionary new technology of negative-refraction metamaterials Negative-Refraction Metamaterials: Fundamental Principles and Applications introduces artificial materials that support the unusual electromagnetic property of negative refraction. Readers will discover several classes of negative-refraction materials along with their exciting, groundbreaking applications, such as lenses and antennas, imaging with super- resolution, microwave devices, dispersion-compensating interconnects, radar, and defense. The book begins with a chapter describing the fundamentals of isotropic metamaterials in which a negative index of refraction is defined. In the following chapters, the text builds on the fundamentals by describing a range of useful microwave devices and antennas. Next, a broad spectrum of exciting new research and emerging applications is examined, including: * Theory and experiments behind a super-resolving, negative-refractive-index transmission-line lens * 3-D transmission-line metamaterials with a negative refractive index * Numerical simulation studies of negative refraction of Gaussian beams and associated focusing phenomena * Unique advantages and theory of shaped lenses made of negative-refractive-index metamaterials * A new type of transmission-line metamaterial that is anisotropic and supports the formation of sharp steerable beams (resonance cones) * Implementations of negative-refraction metamaterials at optical frequencies * Unusual propagation phenomena in metallic waveguides partially filled with negative-refractive- index metamaterials * Metamaterials in which the refractive index and the underlying group velocity are both negative This work brings together the best minds in this cutting-edge field. It is fascinating reading for scie ntists, engineers, and graduate-level students in physics, chemistry, materials science, photonics, and electrical engineering.

  • Appendix 2: Crystal Manufacturers

    Quartz crystal-a technology that changed the tide of World War II Some of the defining leaps in technology in the twentieth century occurred during the Second World War, from radar to nuclear energy. Often left out of historical discussions are quartz crystals, which proved to be just as pivotal to the Allied victory-and to post-war development-as other technologies. Quartz crystals provided the U.S. military, for the first time, with reliable communication on the front lines, and then went on to become the core of some of the most basic devices of the post-war era, from watches, clocks, and color televisions, to cell phones and computers. In Crystal Clear, Richard Thompson relates the story of the quartz crystal in World War II, from its early days as a curiosity for amateur radio enthusiasts, to its use by the United States Armed Forces. It follows the intrepid group of scientists and engineers from the Office of the Chief Signal Officer of the U.S. Army as they ra ed to create an effective quartz crystal unit. They had to find a reliable supply of radio-quality quartz; devise methods to reach, mine, and transport the quartz; find a way to manufacture quartz crystal oscillators rapidly; and then solve the puzzling "aging problem" that plagued the early units. Ultimately, the development of quartz oscillators became the second largest scientific undertaking in World War II after the Manhattan Project. Bringing to light a little-known aspect of World War II, Crystal Clear offers a glimpse inside one of the most significant efforts in the annals of engineering.

  • Domestic and Industrial Applications

    A group of physicists in Spain has reportedly created a magnetic ???wormhole??? in the laboratory ???that is capable of transporting a magnetic field from one point in space to another". At the 83rd Geneva International Motor Show in Switzerland, Volvo unveiled a bicyclist detection system, which should soon be available on many of its models. An enhanced version of the pedestrian detection system, which Volvo launched in 2010, it uses a radar in the car's grille as well as a camera located behind the windshield. Moving beyond material science, some European and Japanese researchers are exploring electric motor designs that do away with permanent magnets altogether. One such design is a switched reluctance motor. The ???local warming??? project can be coupled with a smart???phone???based app so that each person can get the light???emitting diodes (LEDs) targeted at him to deliver the desired level of heat.

  • References

    Quartz crystal-a technology that changed the tide of World War II Some of the defining leaps in technology in the twentieth century occurred during the Second World War, from radar to nuclear energy. Often left out of historical discussions are quartz crystals, which proved to be just as pivotal to the Allied victory-and to post-war development-as other technologies. Quartz crystals provided the U.S. military, for the first time, with reliable communication on the front lines, and then went on to become the core of some of the most basic devices of the post-war era, from watches, clocks, and color televisions, to cell phones and computers. In Crystal Clear, Richard Thompson relates the story of the quartz crystal in World War II, from its early days as a curiosity for amateur radio enthusiasts, to its use by the United States Armed Forces. It follows the intrepid group of scientists and engineers from the Office of the Chief Signal Officer of the U.S. Army as they ra ed to create an effective quartz crystal unit. They had to find a reliable supply of radio-quality quartz; devise methods to reach, mine, and transport the quartz; find a way to manufacture quartz crystal oscillators rapidly; and then solve the puzzling "aging problem" that plagued the early units. Ultimately, the development of quartz oscillators became the second largest scientific undertaking in World War II after the Manhattan Project. Bringing to light a little-known aspect of World War II, Crystal Clear offers a glimpse inside one of the most significant efforts in the annals of engineering.

  • Applications

    Today, engineering problems are very complex, requiring powerful computer simulations to power them. For engineers, observable-based parameterization as well as numerically computable forms¿with rapid convergent properties if in a series¿are essential. Complex Electromagnetic Problems and Numerical Simulation Approaches, along with its companion FTP site, will show you how to take on complex electromagnetic problems and solve them in an accurate and efficient manner. Organized into two distinct parts, this comprehensive resource first introduces you to the concepts, approaches, and numerical simulation techniques that will be used throughout the book and then, in Part II, offers step-by-step guidance as to their practical, real-world applications. Self-contained chapters will enable you to find specific solutions to numerous problems. Filled with in-depth insight and expert advice, Complex Electromagnetic Problems and Numerical Simulation Approaches: Describes ground wave propagation Examines antenna systems Deals with radar cross section (RCS) modeling Explores microstrip network design with FDTD and TLM techniques Discusses electromagnetic compatibility (EMC) and bio-electromagnetics (BEM) modeling Presents radar simulation Whether you're a professional electromagnetic engineer requiring a consolidated overview of the subject or an academic/student who wishes to use powerful simulators as a learning tool, Complex Electromagnetic Problems and Numerical Simulation Approaches - with its focus on model development, model justification, and range of validity - is the right book for you.

  • No title

    Adaptive detection of signals embedded in correlated Gaussian noise has been an active field of research in the last decades. This topic is important in many areas of signal processing such as, just to give some examples, radar, sonar, communications, and hyperspectral imaging. Most of the existing adaptive algorithms have been designed following the lead of the derivation of Kelly's detector which assumes perfect knowledge of the target steering vector. However, in realistic scenarios, mismatches are likely to occur due to both environmental and instrumental factors. When a mismatched signal is present in the data under test, conventional algorithms may suffer severe performance degradation. The presence of strong interferers in the cell under test makes the detection task even more challenging. An effective way to cope with this scenario relies on the use of "tunable" detectors, i.e., detectors capable of changing their directivity through the tuning of proper parameters. The aim o this book is to present some recent advances in the design of tunable detectors and the focus is on the so-called two-stage detectors, i.e., adaptive algorithms obtained cascading two detectors with opposite behaviors. We derive exact closed-form expressions for the resulting probability of false alarm and the probability of detection for both matched and mismatched signals embedded in homogeneous Gaussian noise. It turns out that such solutions guarantee a wide operational range in terms of tunability while retaining, at the same time, an overall performance in presence of matched signals commensurate with Kelly's detector. Table of Contents: Introduction / Adaptive Radar Detection of Targets / Adaptive Detection Schemes for Mismatched Signals / Enhanced Adaptive Sidelobe Blanking Algorithms / Conclusions

  • Design Examples

    This chapter contains sections titled: Introduction Example 1: Doppler Radar Processor Example 2: Power Spectrum Estimator Example 3: Speech Analyzer Example 4: Image Deblurring Conclusions This chapter contains sections titled: References

  • Bibliography

    "The increasing commercial use of millimeter wavelengths for remote sensing, communications, and radar systems has driven the need for new low-cost, high performance systems, and with it, the need for quasioptical systems.Combining a general introduction to Gaussian beams and quasioptical propagation with practical applications, QUASIOPTICAL SYSTEMS provides a state-of-the-art treatment of the design of low-loss, broadband systems at microwave to submillimeter wavelegnths. the approach presented involved utilizing a beam with a Gaussian distribution of field strength perpendicular to its axis, which in turn propagates in a simple predictable fashion. Features include: A Convenient summary of Gaussian beam propagation formulas; Extensive coverage of present-day quasioptical components and their performance; In-depth coverage of dielectric material uses at millimeter and submillimeter wavelengths; An analysis of lenses and mirrors together with design techniques; and much more!This book will be of key interest to systems designers, antenna engineers, communications systems engineers, and researchers."



Standards related to Radar

Back to Top

IEEE Recommended Practice for Determining Safe Distances From Radio Frequency Transmitting Antennas When Using Electric Blasting Caps During Explosive Operations

This project provides recommended practices for the prediction and practical determination of safe distances from radio and radar transmitting antennas when using electric initiators to remotely detonate an explosive charge. Specifically, this document includes mathematical formulas, tables, and charts that allow the user to determine safe distances from RF transmitters with spectrum bands from 0.5 MHz to 300 GHz, including ...


IEEE Standard for Ultrawideband Radar Definitions

This document organizes and standardizes the terms and definitions used in the field of ultrawideband (UWB) radar.


IEEE Standard for Ultrawideband Radar Definitions

This document organizes and standardizes the terms and definitions used in the field of ultrawideband (UWB) radar.


IEEE Standard for Ultrawideband Radar Definitions - Corrigendum 1

This document organizes and standardizes the terms and definitions used in the field of ultrawideband(UWB) radar.


IEEE Standard Letter Designations for Radar-Frequency Bands

Radar systems operate in frequency bands that since World War II have been identified by letter designations. To recognize and preserve accepted usage, the proposed revision would re-affirm the letter designations for radar, revising the current standard to update it regarding current International Telecommunication Union (ITU) radar band allocations and comments. No change in scope from the current standard is ...


More Standards

Jobs related to Radar

Back to Top