Prosthesis

View this topic in
In medicine, a prosthesis, prosthetic, or prosthetic limb is an artificial device extension that replaces a missing body part. (Wikipedia.org)






Conferences related to Prosthesis

Back to Top

2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)

The Conference focuses on all aspects of instrumentation and measurement science andtechnology research development and applications. The list of program topics includes but isnot limited to: Measurement Science & Education, Measurement Systems, Measurement DataAcquisition, Measurements of Physical Quantities, and Measurement Applications.


2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)

Ferroelectric materials and applications


2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)

The world's premiere conference in MEMS sensors, actuators and integrated micro and nano systems welcomes you to attend this four-day event showcasing major technological, scientific and commercial breakthroughs in mechanical, optical, chemical and biological devices and systems using micro and nanotechnology.The major areas of activity in the development of Transducers solicited and expected at this conference include but are not limited to: Bio, Medical, Chemical, and Micro Total Analysis Systems Fabrication and Packaging Mechanical and Physical Sensors Materials and Characterization Design, Simulation and Theory Actuators Optical MEMS RF MEMS Nanotechnology Energy and Power


2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops andinvitedsessions of the latest significant findings and developments in all the major fields ofbiomedical engineering.Submitted papers will be peer reviewed. Accepted high quality paperswill be presented in oral and postersessions, will appear in the Conference Proceedings and willbe indexed in PubMed/MEDLINE & IEEE Xplore


2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)

Neural Engineering

  • 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER)

    Neural Engineering is an emerging core discipline,which coalesces neuroscience with engineering.Members of both the Neuroscience and Engineering Communities areencouraged to attend this highly multidisciplinarymeeting. The conference will highlight the emergingengineering innovations in the restoration andenhancement of impaired sensory, motor, andcognitive functions, novel engineering for deepeningknowledge of brain function, and advanced designand use of neurotechnologies

  • 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)

    Neural engineering deals with many aspects of basic and clinical problemsassociated with neural dysfunction including the representation of sensory and motor information, theelectrical stimulation of the neuromuscular system to control the muscle activation and movement, theanalysis and visualization of complex neural systems at multi -scale from the single -cell and to the systemlevels to understand the underlying mechanisms, the development of novel neural prostheses, implantsand wearable devices to restore and enhance the impaired sensory and motor systems and functions.

  • 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)

    Neural engineering deals with many aspects of basic and clinical problems associated with neural dysfunction including the representation of sensory and motor information, the electrical stimulation of the neuromuscular system to control the muscle activation and movement, the analysis and visualization of complex neural systems at multi-scale from the single-cell and to the system levels to understand the underlying mechanisms, the development of novel neural prostheses, implants and wearable devices to restore and enhance the impaired sensory and motor systems and functions.

  • 2011 5th International IEEE/EMBS Conference on Neural Engineering (NER)

    highlight the emerging field, Neural Engineering that unites engineering, physics, chemistry, mathematics, computer science with molecular, cellular, cognitive and behavioral neuroscience and encompasses such areas as replacing or restoring lost sensory and motor abilities, defining the organizing principles and underlying mechanisms of neural systems, neurorobotics, neuroelectronics, brain imaging and mapping, cognitive science and neuroscience.

  • 2009 4th International IEEE/EMBS Conference on Neural Engineering (NER)

    highlight the emerging field, Neural Engineering that unites engineering, physics, chemistry, mathematics, computer science with molecular, cellular, cognitive and behavioral neuroscience and encompasses such areas as replacing or restoring lost sensory and motor abilities, defining the organizing principles and underlying mechanisms of neural systems, neurorobotics, neuroelectronics, brain imaging and mapping, cognitive science and neuroscience.

  • 2007 3rd International IEEE/EMBS Conference on Neural Engineering

  • 2005 2nd International IEEE/EMBS Conference on Neural Engineering

  • 2003 1st International IEEE/EMBS Conference on Neural Engineering


More Conferences

Periodicals related to Prosthesis

Back to Top

Biomedical Circuits and Systems, IEEE Transactions on

The Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems ...


Biomedical Engineering, IEEE Reviews in

The IEEE Reviews in Biomedical Engineering will review the state-of-the-art and trends in the emerging field of biomedical engineering. This includes scholarly works, ranging from historic and modern development in biomedical engineering to the life sciences and medicine enabled by technologies covered by the various IEEE societies.


Biomedical Engineering, IEEE Transactions on

Broad coverage of concepts and methods of the physical and engineering sciences applied in biology and medicine, ranging from formalized mathematical theory through experimental science and technological development to practical clinical applications.


Computer Graphics and Applications, IEEE

IEEE Computer Graphics and Applications (CG&A) bridges the theory and practice of computer graphics. From specific algorithms to full system implementations, CG&A offers a strong combination of peer-reviewed feature articles and refereed departments, including news and product announcements. Special Applications sidebars relate research stories to commercial development. Cover stories focus on creative applications of the technology by an artist or ...


Education, IEEE Transactions on

Educational methods, technology, and programs; history of technology; impact of evolving research on education.


More Periodicals


Xplore Articles related to Prosthesis

Back to Top

A Miniaturized, Eye-Conformable, and Long-Term Reliable Retinal Prosthesis Using Monolithic Fabrication of Liquid Crystal Polymer (LCP)

IEEE Transactions on Biomedical Engineering, 2015

A novel retinal prosthetic device was developed using biocompatible liquid crystal polymer (LCP) to address the problems associated with conventional metal- and polymer-based devices: the hermetic metal package is bulky, heavy, and labor-intensive, whereas a thin, flexible, and MEMS-compatible polymer- based system is not durable enough for chronic implantation. Exploiting the advantageous properties of LCP such as a low moisture ...


Standing Stability Enhancement With an Intelligent Powered Transfemoral Prosthesis

IEEE Transactions on Biomedical Engineering, 2011

The authors have developed a ground-adaptive standing controller for a powered knee and ankle prosthesis which is intended to enhance the standing stability of transfemoral amputees. The finite-state-based controller includes a ground- searching phase, a slope estimation phase, and a joint impedance modulation phase, which together enable the prosthesis to quickly conform to the ground and provide stabilizing assistance to ...


The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-Bodied Kinematics

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016

There is a major need in the developing world for a low-cost prosthetic knee that enables users to walk with able-bodied kinematics and low energy expenditure. To efficiently design such a knee, the relationship between the inertial properties of a prosthetic leg and joint kinetics and energetics must be determined. In this paper, using inverse dynamics, the theoretical effects of ...


Simulation based computation model for epiretinal prosthesis

2013 International Conference on Electronics, Computer and Computation (ICECCO), 2013

The degenerative retina diseases such as Age Related Macular Degeneration (AMD) and Retinitis Pigmentosa (RP) are recently encountered because of visual loss. There is not any known cure for these diseases, but studies are in progress on restoration of visual perception. In studies carried out recently by virtue of innovations in the field of microtechnology, bioengineering, packaging, it is aimed ...


Implementation of machine learning for classifying prosthesis type through conventional gait analysis

2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015

Current forecasts imply a significant increase in the quantity of lower limb amputations. Synergizing the capabilities of a conventional gait analysis system and machine learning facilitates the capacity to classify disparate types of transtibial prostheses. Automated classification of prosthesis type may eventually advance rehabilitative acuity for selecting an appropriate prosthesis for a given aspect of the rehabilitation process. The presented ...


More Xplore Articles

Educational Resources on Prosthesis

Back to Top

IEEE-USA E-Books

  • A Miniaturized, Eye-Conformable, and Long-Term Reliable Retinal Prosthesis Using Monolithic Fabrication of Liquid Crystal Polymer (LCP)

    A novel retinal prosthetic device was developed using biocompatible liquid crystal polymer (LCP) to address the problems associated with conventional metal- and polymer-based devices: the hermetic metal package is bulky, heavy, and labor-intensive, whereas a thin, flexible, and MEMS-compatible polymer- based system is not durable enough for chronic implantation. Exploiting the advantageous properties of LCP such as a low moisture absorption rate, thermobonding, and thermoforming, we fabricate a small, light-weight, long- term reliable retinal prosthesis that can be conformally attached on the eye- surface. A LCP fabrication process using monolithic integration and conformal deformation was established enabling miniaturization and a batch manufacturing process as well as eliminating the need for feed-through technology. The functionality of the fabricated device was tested through wireless operation in saline solution. Its efficacy and implantation stability were verified through in vivo animal tests by measuring the cortical potential and monitoring implanted dummy devices for more than a year, respectively.

  • Standing Stability Enhancement With an Intelligent Powered Transfemoral Prosthesis

    The authors have developed a ground-adaptive standing controller for a powered knee and ankle prosthesis which is intended to enhance the standing stability of transfemoral amputees. The finite-state-based controller includes a ground- searching phase, a slope estimation phase, and a joint impedance modulation phase, which together enable the prosthesis to quickly conform to the ground and provide stabilizing assistance to the user. In order to assess the efficacy of the ground-adaptive standing controller, the control approach was implemented on a powered knee and ankle prosthesis, and experimental data were collected on an amputee subject for a variety of standing conditions. Results indicate that the controller can estimate the ground slope within ±1° over a range of ±15°, and that it can provide appropriate joint impedances for standing on slopes within this range.

  • The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-Bodied Kinematics

    There is a major need in the developing world for a low-cost prosthetic knee that enables users to walk with able-bodied kinematics and low energy expenditure. To efficiently design such a knee, the relationship between the inertial properties of a prosthetic leg and joint kinetics and energetics must be determined. In this paper, using inverse dynamics, the theoretical effects of varying the inertial properties of an above-knee prosthesis on the prosthetic knee moment, hip power, and absolute hip work required for walking with able-bodied kinematics were quantified. The effects of independently varying mass and moment of inertia of the prosthesis, as well as independently varying the masses of each prosthesis segment, were also compared. Decreasing prosthesis mass to 25% of physiological leg mass increased peak late-stance knee moment by 43% and decreased peak swing knee moment by 76%. In addition, it reduced peak stance hip power by 26%, average swing hip power by 76%, and absolute hip work by 22%. Decreasing upper leg mass to 25% of its physiological value reduced absolute hip work by just 2%, whereas decreasing lower leg and foot mass reduced work by up to 22%, with foot mass having the greater effect. Results are reported in the form of parametric illustrations that can be utilized by researchers, designers, and prosthetists. The methods and outcomes presented have the potential to improve prosthetic knee component selection, facilitate able-bodied kinematics, and reduce energy expenditure for users of low-cost, passive knees in developing countries, as well as for users of advanced active knees in developed countries.

  • Simulation based computation model for epiretinal prosthesis

    The degenerative retina diseases such as Age Related Macular Degeneration (AMD) and Retinitis Pigmentosa (RP) are recently encountered because of visual loss. There is not any known cure for these diseases, but studies are in progress on restoration of visual perception. In studies carried out recently by virtue of innovations in the field of microtechnology, bioengineering, packaging, it is aimed to develop visual prosthesis systems for purposes of activation of visual perception. In this study, various factors affecting efficiency of the visual prosthesis systems are reviewed, and then electric field distribution on tissue is simulated under quasi-static limits by using the finite element analysis. In this context, a layered retina tissue, stimulation and return electrodes which are in contact with the retina tissue are modeled. It is seen that deeper nerve cell communities are stimulated as the potential difference applied between the electrodes increases. Given that the nerve cells need to be stimulated individually for a visual prosthesis system with high resolution, it is concluded that the stimulation electrodes in contact with the tissue need to be penetrated into the tissue.

  • Implementation of machine learning for classifying prosthesis type through conventional gait analysis

    Current forecasts imply a significant increase in the quantity of lower limb amputations. Synergizing the capabilities of a conventional gait analysis system and machine learning facilitates the capacity to classify disparate types of transtibial prostheses. Automated classification of prosthesis type may eventually advance rehabilitative acuity for selecting an appropriate prosthesis for a given aspect of the rehabilitation process. The presented research utilized a force plate as a conventional gait analysis device to acquire a feature set for two types of prosthesis: passive Solid Ankle Cushioned Heel (SACH) and the iWalk BiOM powered prosthesis. The feature set consists of both temporal and kinetic data with respect to the force plate signal during stance. Intuitively a passive prosthesis and powered prosthesis generate distinctively different force plate recordings. A support vector machine, which is type of machine learning application, achieves 100% classification between a passive prosthesis and powered prosthesis regarding the feature set derived from force plate recordings.

  • Running With a Powered Knee and Ankle Prosthesis

    This paper presents a running control architecture for a powered knee and ankle prosthesis that enables a transfemoral amputee to run with a biomechanically appropriate running gait and to intentionally transition between a walking and running gait. The control architecture consists firstly of a coordination level controller, which provides gait biomechanics representative of healthy running, and secondly of a gait selection controller that enables the user to intentionally transition between a running and walking gait. The running control architecture was implemented on a transfemoral prosthesis with powered knee and ankle joints, and the efficacy of the controller was assessed in a series of running trials with a transfemoral amputee subject. Specifically, treadmill trials were conducted to assess the extent to which the coordination controller provided a biomechanically appropriate running gait. Separate trials were conducted to assess the ability of the user to consistently and reliably transition between walking and running gaits.

  • Development of an inductively coupled epiretinal vision prosthesis

    Electrical stimulation of the retina elicits visual perception in patients with retinitis pigmentosa. Using the potentials of microsystem technology, neural prostheses to restore vision become feasible that are completely implantable in the eye. In this paper, we describe the development of an inductively coupled epiretinal vision prosthesis. Microelectronic chips for data encoding and stimulation were assembled on flexible substrates with an integrated electrode array. The system was encapsulated with parylene C and silicone rubber. The receiver part was placed into an artificial intraocular lens. Microcables led to the stimulation array in the macula region. This prototype elicited spatio-temporal patterns in the visual cortex after electrical stimulation of the retina in the cat.

  • Image Analysis for Microelectronic Retinal Prosthesis

    By way of extracellular, stimulating electrodes, a microelectronic retinal prosthesis aims to render discrete, luminous spots-so-called phosphenes-in the visual field, thereby providing a phosphene image (PI) as a rudimentary remediation of profound blindness. As part thereof, a digital camera, or some other photosensitive array, captures frames, frames are analyzed, and phosphenes are actuated accordingly by way of modulated charge injections. Here, we present a method that allows the assessment of image analysis schemes for integration with a prosthetic device, that is, the means of converting the captured image (high resolution) to modulated charge injections (low resolution). We use the mutual-information function to quantify the amount of information conveyed to the PI observer (device implantee), while accounting for the statistics of visual stimuli. We demonstrate an effective scheme involving overlapping, Gaussian kernels, and discuss extensions of the method to account for short-term visual memory in observers, and their perceptual errors of omission and commission.

  • Metabolics of stair ascent with a powered transfemoral prosthesis

    This paper evaluates the effectiveness of a powered knee and ankle prosthesis for stair ascent through a metabolic assessment comparing energy expenditure of a single transfemoral amputee subject while ascending stairs with the powered prosthesis relative to his passive daily use device, as well as comparing the kinematics and kinetics obtained with the passive prosthesis to healthy biomechanics. The subject wore a portable system that measured pulmonary gaseous exchange rates of oxygen and carbon dioxide while he ascended stairs with each of the prostheses in alternating tests. The results indicated that the amputee's energy expenditure decreased by 32 percent while climbing with the powered prosthesis as compared to his passive one, and the kinematics and kinetics achieved were representative of healthy biomechanics.

  • A running controller for a powered transfemoral prosthesis

    This paper describes a running controller for a powered knee and ankle prosthesis. The running controller was implemented on a powered prosthesis prototype and evaluated by a transfemoral amputee subject running on a treadmill at a speed of 2.25 m/s (5.0 mph). The ability of the prosthesis and controller to provide the salient features of a running gait was assessed by comparing the kinematics of running provided by the powered prosthesis to the averaged kinematics of five healthy subjects running at the same speed. This comparison indicates that the powered prosthesis and running controller are able to provide essential features of a healthy running gait.



Standards related to Prosthesis

Back to Top

No standards are currently tagged "Prosthesis"


Jobs related to Prosthesis

Back to Top