Nanotechnology

View this topic in
Nanotechnology (sometimes shortened to "nanotech") is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with structures sized between 1 to 100 nanometre in at least one dimension, and involves developing materials or devices possessing at least one dimension within that size. Quantum mechanical effects are very important at this scale, which is in the quantum realm. (Wikipedia.org)






Conferences related to Nanotechnology

Back to Top

2017 IEEE International Electron Devices Meeting (IEDM)

the IEEE/IEDM has been the world's main forum for reporting breakthroughs in technology, design, manufacturing, physics and the modeling of semiconductors and other electronic devices. Topics range from deep submicron CMOS transistors and memories to novel displays and imagers, from compound semiconductor materials to nanotechnology devices and architectures, from micromachined devices to smart -power technologies, etc.

  • 2021 IEEE International Electron Devices Meeting (IEDM)

    the IEEE/IEDM has been the world's main forum for reporting breakthroughs in technology, design, manufacturing, physics and the modeling of semiconductors and other electronic devices. Topics range from deep submicron CMOS transistors and memories to novel displays and imagers, from compound semiconductor materials to nanotechnology devices and architectures, from micromachined devices to smart -power technologies, etc.

  • 2019 IEEE International Electron Devices Meeting (IEDM)

    the IEEE/IEDM has been the world's main forum for reporting breakthroughs in technology, design, manufacturing, physics and the modeling of semiconductors and other electronic devices. Topics range from deep submicron CMOS transistors and memories to novel displays and imagers, from compound semiconductor materials to nanotechnology devices and architectures, from micromachined devices to smart -power technologies, etc.

  • 2015 IEEE International Electron Devices Meeting (IEDM)

    the IEEE/IEDM has been the world's main forum for reporting breakthroughs in technology, design, manufacturing, physics and the modeling of semiconductors and other electronic devices. Topics range from deep submicron CMOS transistors and memories to novel displays and imagers, from compound semiconductor materials to nanotechnology devices and architectures, from micromachined devices to smart-power technologies, etc.

  • 2014 IEEE International Electron Devices Meeting (IEDM)

    IEDM is the world s pre-eminent forum for reporting technological breakthroughs in the areas of semiconductor and electronic device technology, design, manufacturing, physics, and modeling. IEDM is the flagship conference for nanometer-scale CMOS transistor technology, advanced memory, displays, sensors, MEMS devices, novel quantum and nano-scale devices and phenomenology, optoelectronics, devices for power and energy harvesting, high-speed devices, as well as process technology and device modeling and simulation.

  • 2013 IEEE International Electron Devices Meeting (IEDM)

    IEDM is the world s pre-eminent forum for reporting technological breakthroughs in the areas of semiconductor and electronic device technology, design, manufacturing, physics, and modeling. IEDM is the flagship conference for nanometer-scale CMOS transistor technology, advanced memory, displays, sensors, MEMS devices, novel quantum and nano-scale devices and phenomenology, optoelectronics, devices for power and energy harvesting, high-speed devices, as well as process technology and device modeling and simulation.

  • 2012 IEEE International Electron Devices Meeting (IEDM)

  • 2011 IEEE International Electron Devices Meeting (IEDM)

    CMOS Devices Technology, Characterization, Reliability and Yield, Displays, sensors and displays, memory technology, modeling and simulation, process technology, solid state and nanoelectronic devices.

  • 2010 IEEE International Electron Devices Meeting (IEDM)

  • 2009 IEEE International Electron Devices Meeting (IEDM)

    CMOS Devices Technology, Characterization, REliability and Yield, Displays, sensors and displays, memory technology, modeling and simulation, process technology, solid state and nanoelectronic devices

  • 2008 IEEE International Electron Devices Meeting (IEDM)

    Over the last 53 years, the IEEE/IEDM has been the world's main forum for reporting breakthroughs in technology, design, manufacturing, physics and the modeling of semiconductors and other electronic devices. Topics range from deep submicron CMOS transistors and memories to novel displays and imagers, from compound semiconductor materials to nanotechnology devices and architectures, from micromachined devices to smart-power technologies, etc.

  • 2007 IEEE International Electron Devices Meeting (IEDM)

  • 2006 IEEE International Electron Devices Meeting (IEDM)


2017 IEEE/MTT-S International Microwave Symposium - MTT 2017

The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.

  • 2029 IEEE/MTT-S International Microwave Symposium - MTT 2029

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2021 IEEE/MTT-S International Microwave Symposium - MTT 2021

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.

  • 2019 IEEE/MTT-S International Microwave Symposium - MTT 2019

    Comprehensive symposium on microwave theory and techniques including active and passive circuit components, theory and microwave systems.

  • 2018 IEEE/MTT-S International Microwave Symposium - MTT 2018

    Microwave theory and techniques, RF/microwave/millimeter-wave/terahertz circuit design and fabrication technology, radio/wireless communication.

  • 2016 IEEE/MTT-S International Microwave Symposium - MTT 2016

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2015 IEEE MTT-S International Microwave Symposium (IMS2015)

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics. The IMS includes technical sessions, both oral and interactive, worksh

  • 2014 IEEE/MTT-S International Microwave Symposium - MTT 2014

    IMS2014 will cover developments in microwave technology from nano devices to system applications. Technical paper sessions, interactive forums, plenary and panel sessions, workshops, short courses, industrial exhibits, and a wide array of other technical activities will be offered.

  • 2013 IEEE/MTT-S International Microwave Symposium - MTT 2013

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter -wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2012 IEEE/MTT-S International Microwave Symposium - MTT 2012

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2011 IEEE/MTT-S International Microwave Symposium - MTT 2011

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010

    Reports of research and development at the state-of-the-art of the theory and techniques related to the technology and applications of devices, components, circuits, modules and systems in the RF, microwave, millimeter-wave, submillimeter-wave and Terahertz ranges of the electromagnetic spectrum.

  • 2009 IEEE/MTT-S International Microwave Symposium - MTT 2009

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2008 IEEE/MTT-S International Microwave Symposium - MTT 2008

  • 2007 IEEE/MTT-S International Microwave Symposium - MTT 2007

  • 2006 IEEE/MTT-S International Microwave Symposium - MTT 2006


2016 Annual Conference on Magnetism and Magnetic Materials (MMM)

Focus in on fundamental and applied magnetism. Invited, contributed papers plus oral and poster presentations and invited symposia. Developments in all areas of magnetism research are discussed.


2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016)

The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forumfor the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2016 willbe the thirteenth meeting in this series. The previous meetings have played a leading role in facilitatinginteraction between researchers in medical and biological imaging. The 2016 meeting will continue thistradition of fostering crossfertilization among different imaging communities and contributing to an integrativeapproach to biomedical imaging across all scales of observation.

  • 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2015 will be the 12th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2014 will be the eleventh meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013)

    To serve the biological, biomedical, bioengineering, bioimaging and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2011 IEEE 8th International Symposium on Biomedical Imaging (ISBI 2011)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2010 IEEE 7th International Symposium on Biomedical Imaging (ISBI 2010)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2009 IEEE 6th International Symposium on Biomedical Imaging (ISBI 2009)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2008 IEEE 5th International Symposium on Biomedical Imaging (ISBI 2008)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2007 IEEE 4th International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2007)

  • 2006 IEEE 3rd International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2006)


2016 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting

This is the annual symposium for the IEEE Antennas and Propagation Society, and it is joint with the US National Committee of URSI's Radio Science Meeting.

  • 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting

    The joint meeting is intended to provide an international forum for the exchange of information on state of-the-art research in the areas of antennas, propagation, electromagnetic engineering, and radio science.

  • 2014 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting

    The joint meeting is intended to provide an international forum for the exchange of information on state of-the-art research in the areas of antennas, propagation, electromagnetic engineering, and radio science. Technical sessions will be held over a four-day period and workshops and short courses will occur on two days.

  • 2013 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting

    The Symposium serves as the premier international forum for the exchange of information on state-of-the-art research in antennas, electromagnetic- wave propagation, radio science, and electromagnetic engineering.

  • 2012 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting

    This conference covers all areas relating to antenna theory, design and practice: propagation, including theory, effects and system considerations; analytical and computational electromagnetics, scattering, diffraction, and radar cross sections; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, millimeter and submillimeter wave techniques, telecommunications, broadcasting, electromagnetic effects on biological tissue.

  • 2011 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting

    This meeting is intended to provide an international forum for the exchange of information on state-of-the-art research in antennas, propagation, and electromagnetic engineering.

  • 2010 IEEE International Symposium Antennas and Propagation and CNC/USNC/URSI Radio Science Meeting

    This is the premier annual conference on Antennas and Propagation, electromagnetics and radio science.

  • 2009 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting

    This joint meeting is co-sponsored by the IEEE Antennas and Propagation Society (AP-S) and USNC-URSI Commissions A, B, C, D, E, F and K. Technical sessions (June 1-5), workshops and short courses (May 31 & June 6) are offered to provide a comprehensive and well balanced program. This meeting provides an international forum for the exchange of information on state-of-the-art research in antennas, propagation, and electromagnetic engineering.

  • 2008 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting

    This meeting is intended to provide an international forum for the exchange of information on state-of-the-art research in antennas, propagation, and electromagnetic engineering.


More Conferences

Periodicals related to Nanotechnology

Back to Top

Advanced Packaging, IEEE Transactions on

The IEEE Transactions on Advanced Packaging has its focus on the modeling, design, and analysis of advanced electronic, photonic, sensors, and MEMS packaging.


Antennas and Propagation, IEEE Transactions on

Experimental and theoretical advances in antennas including design and development, and in the propagation of electromagnetic waves including scattering, diffraction and interaction with continuous media; and applications pertinent to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques.


Antennas and Wireless Propagation Letters, IEEE

IEEE Antennas and Wireless Propagation Letters (AWP Letters) will be devoted to the rapid electronic publication of short manuscripts in the technical areas of Antennas and Wireless Propagation.


Broadcasting, IEEE Transactions on

Broadcast technology, including devices, equipment, techniques, and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.


Components and Packaging Technologies, IEEE Transactions on

Component parts, hybrid microelectronics, materials, packaging techniques, and manufacturing technology.


More Periodicals


Xplore Articles related to Nanotechnology

Back to Top

Use DNA origami as a scaffold for self-assembly of optical metamolecules

Yoon Jo Hwang; Shelley F. J. Wickham; Steven D. Perrault; Sanghyun Yoo; Sung Ha Park; William M. Shih; Seungwoo Lee 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2015

A roadmap for assembling optical metamolecule is not yet clear; to address this challenge, herein, we propose to use DNA origami to achieve custom arrangements of metallic nanoparticles for deterministic assembly of optical metamolecules.


Dual-band textile antenna on AMC substrate for wearable applications

Ameni Mersani; Lotfi Osman; Imen Sfar 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), 2015

The use of the wireless electronics in clothing is essential in our days in order to maintain user safety, rescue work and military personal communication. It can also be dedicated to medical and sports space applications. For this reason, this study is devoted to the design of a textile antenna operating in the WLAN bands (2.4-2.484 GHz) & (5.15-5.825 GHz). ...


Buckling of carbon nanotubes under axial compression

S. Akita; M. Nishio; Y. Nakayama Digest of Papers Microprocesses and Nanotechnology 2005, 2005

We have investigated the axial buckling of a multiwall nanotube by changing its number of layers. Young's moduli of nanotubes with different inner hollow diameters are estimated to be 0.77 TPa and 0.80 TPa from the Euler's buckling model, respectively. This good agreement implies that the Euler's buckling model is applicable to the analysis of the axial buckling behaviors of ...


Nonhysteretic Phenomena in the Metal&#x2013;Semiconductor Phase-Transition Loop of <formula formulatype="inline"><tex Notation="TeX">$hbox{VO}_{2}$</tex> </formula> Films for Bolometric Sensor Applications

Michael Gurvitch; Serge Luryi; Aleksandr Polyakov; Alexander Shabalov IEEE Transactions on Nanotechnology, 2010

Hysteresis observed in the resistive semiconductor-to-metal phase transition in VO2 causes problems in bolometric readout, and thus is an obstacle in utilizing this strong phase transition in bolometric sensor applications. It is possible to avoid the unwanted hysteresis when operating in limited temperature ranges within the hysteresis loop of VO2. Nonhysteretic branches (NHB-s) traced in such limited temperature intervals turned ...


Efficient Solution of the Wigner&#x2013;Poisson Equations for Modeling Resonant Tunneling Diodes

Anne S. Costolanski; C. T. Kelley IEEE Transactions on Nanotechnology, 2010

A more efficient and accurate discretization of the Wigner-Poisson model for double barrier resonant tunneling diodes is presented. This new implementation uses nonuniform grids and higher order numerical methods to improve the accuracy of the solutions at a significantly lower computational cost. Using the new implementation, devices with short and long contact regions are analyzed as well as the effect ...


More Xplore Articles

Educational Resources on Nanotechnology

Back to Top

eLearning

Use DNA origami as a scaffold for self-assembly of optical metamolecules

Yoon Jo Hwang; Shelley F. J. Wickham; Steven D. Perrault; Sanghyun Yoo; Sung Ha Park; William M. Shih; Seungwoo Lee 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2015

A roadmap for assembling optical metamolecule is not yet clear; to address this challenge, herein, we propose to use DNA origami to achieve custom arrangements of metallic nanoparticles for deterministic assembly of optical metamolecules.


Dual-band textile antenna on AMC substrate for wearable applications

Ameni Mersani; Lotfi Osman; Imen Sfar 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), 2015

The use of the wireless electronics in clothing is essential in our days in order to maintain user safety, rescue work and military personal communication. It can also be dedicated to medical and sports space applications. For this reason, this study is devoted to the design of a textile antenna operating in the WLAN bands (2.4-2.484 GHz) & (5.15-5.825 GHz). ...


Buckling of carbon nanotubes under axial compression

S. Akita; M. Nishio; Y. Nakayama Digest of Papers Microprocesses and Nanotechnology 2005, 2005

We have investigated the axial buckling of a multiwall nanotube by changing its number of layers. Young's moduli of nanotubes with different inner hollow diameters are estimated to be 0.77 TPa and 0.80 TPa from the Euler's buckling model, respectively. This good agreement implies that the Euler's buckling model is applicable to the analysis of the axial buckling behaviors of ...


Nonhysteretic Phenomena in the Metal&#x2013;Semiconductor Phase-Transition Loop of <formula formulatype="inline"><tex Notation="TeX">$hbox{VO}_{2}$</tex> </formula> Films for Bolometric Sensor Applications

Michael Gurvitch; Serge Luryi; Aleksandr Polyakov; Alexander Shabalov IEEE Transactions on Nanotechnology, 2010

Hysteresis observed in the resistive semiconductor-to-metal phase transition in VO2 causes problems in bolometric readout, and thus is an obstacle in utilizing this strong phase transition in bolometric sensor applications. It is possible to avoid the unwanted hysteresis when operating in limited temperature ranges within the hysteresis loop of VO2. Nonhysteretic branches (NHB-s) traced in such limited temperature intervals turned ...


Efficient Solution of the Wigner&#x2013;Poisson Equations for Modeling Resonant Tunneling Diodes

Anne S. Costolanski; C. T. Kelley IEEE Transactions on Nanotechnology, 2010

A more efficient and accurate discretization of the Wigner-Poisson model for double barrier resonant tunneling diodes is presented. This new implementation uses nonuniform grids and higher order numerical methods to improve the accuracy of the solutions at a significantly lower computational cost. Using the new implementation, devices with short and long contact regions are analyzed as well as the effect ...


More eLearning Resources

IEEE-USA E-Books

  • Emerging Nanotechnology for Integration of Nanostructures in Nanoelectronic Devices

    This chapter contains sections titled: Introduction Diblock copolymer technology for nano-objects fabrication Chemical vapor deposition of nanodots and nanowires Integration of nanoobjects Conclusions

  • Nanomanufacturing Technology: ExaUnits at NanoDollars

    This chapter contains sections titled: Introduction Nanoelectronics: Nanotechnology and More Nanomanufacturing Technology Beyond ICs: Flat Panel Displays Nanomanufacturing Technology Beyond ICs: Photovoltaics Summary and Conclusions References

  • Front Matter

    This chapter contains sections titled: Half Title, Title, Copyright, Contents, Preface

  • Molecular Engineering in Japan

    This chapter contains sections titled: Notes, Discussion

  • Overview and Introduction

    This chapter contains sections titled: Historical Perspective on Nanotechnology, Molecular Systems Engineering, Related Technologies, Perspectives, Why Now?, Nanotechnology and the Cultures of Science and Engineering, Discipline in an Interdisciplinary Field, Notes

  • The Risks of Nanotechnology

    This chapter contains sections titled: Self-Replicating Systems, Planning for Self-Replicating Systems, Designing for Safety, Legislative Constraints, Discussion

  • Front Matter

    **Presents the developments in microelectronic-related fields, with comprehensive insight from a number of leading industry professionals** The book presents the future developments and innovations in the developing field of microelectronics. The book's chapters contain contributions from various authors, all of whom are leading industry professionals affiliated either with top universities, major semiconductor companies, or government laboratories, discussing the evolution of their profession. A wide range of microelectronic-related fields are examined, including solid-state electronics, material science, optoelectronics, bioelectronics, and renewable energies. The topics covered range from fundamental physical principles, materials and device technologies, and major new market opportunities. * Describes the expansion of the field into hot topics such as energy (photovoltaics) and medicine (bio-nanotechnology) * Provides contributions from leadin industry professionals in semiconductor micro- and nano-electronics * Discusses the importance of micro- and nano-electronics in today's rapidly changing and expanding information society _Future Trends in Microelectronics: Journey into the Unknown_ is written for industry professionals and graduate students in engineering, physics, and nanotechnology.

  • The Role of Public (Mis)perceptions in the Acceptance of New Food Technologies: Implications for Food Nanotechnology Applications

    New food technologies encounter problems with successfully entering the consumer market due to perceived public perceptions and concerns. Communication of new developments in food processing plays a critical role in public perceptions and adoption of new food technologies. The presentation of science by the media can affect the public perception of science and public support for legislation and policy. The genetic modification of food is a key example of how information dissemination has impacted public perceptions of the technology. Nanotechnology is creating a revolution in food packaging. The successful adoption of new food technologies is not guaranteed, regardless of scientific support, economic value, enhanced benefits, and minimum risks. The public demands participation in scientific and technical decisions in a move from an uncritical acceptance of new science and technology to solve social and historical problems to one of social scrutiny linked to the perceptions of risks and benefits of development.

  • Notes

    As computers and the tasks they perform become increasingly complex, researchers are looking to nature -- as model and as metaphor -- for inspiration. The organization and behavior of biological organisms present scientists with an invitation to reinvent computing for the complex tasks of the future. In Imitation of Life, Nancy Forbes surveys the emerging field of biologically inspired computing, looking at some of the most impressive and influential examples of this fertile synergy.Forbes points out that the influence of biology on computing goes back to the early days of computer science -- John von Neumann, the architect of the first digital computer, used the human brain as the model for his design. Inspired by von Neumann and other early visionaries, as well as by her work on the "Ultrascale Computing" project at the Defense Advanced Research Projects Agency (DARPA), Forbes describes the exciting potential of these revolutionary new technologies. She identifies three strains of biologically inspired computing: the use of biology as a metaphor or inspiration for the development of algorithms; the construction of information processing systems that use biological materials or are modeled on biological processes, or both; and the effort to understand how biological organisms "compute," or process information.Forbes then shows us how current researchers are using these approaches. In successive chapters, she looks at artificial neural networks; evolutionary and genetic algorithms, which search for the "fittest" among a generation of solutions; cellular automata; artificial life -- not just a simulation, but "alive" in the internal ecosystem of the computer; DNA computation, which uses the encoding capability of DNA to devise algorithms; self-assembly and its potential use in nanotechnology; amorphous computing, modeled on the kind of cooperation seen in a colony of cells or a swarm of bees; computer immune systems; bio-hardware and how bioelectronics compares to silicon; and the "computational" properties of cells.

  • Strategies for Molecular Systems Engineering

    This chapter contains sections titled: Early Molecular Systems Engineering, Molecular Manipulators, Exploratory Engineering, Implications of Nanotechnology, Paths to Nanotechnology, Conclusion, Notes, Discussion



Standards related to Nanotechnology

Back to Top

IEEE Standard Test Methods for Measurement of Electrical Properties of Carbon Nanotubes

This project will develop standard methods for the electrical characterization of carbon nanotubes (CNTs). The methods will be independent of processing routes used to fabricate the CNT's.


Standard for Nanomaterials Characterization and Use in Large Scale Electronics Manufacturing

To fully benefit from the cost, performance, and flexibility of new electronics products manufactured on a large-scale, an industry accustomed to the purchase, use, and engineering of continuum materials must grow to embrace appropriate new practices at the nano-scale.


Standard Methods for the Characterization of Carbon Nanotubes Used as Additives in Bulk Materials

This recommended practice provides standard methods for the characterization of carbon nanotubes used as additives in bulk materials.


Standard Test Methods for Measurement of Electrical Properties of Carbon Nanotubes

This document provides standard methods for the electrical characterization of carbon nanotubes (CNTs). The methods are independent of processing routes used to fabricate the CNT's.



Jobs related to Nanotechnology

Back to Top