Conferences related to Biomedical imaging

Back to Top

2017 IEEE/MTT-S International Microwave Symposium - MTT 2017

The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.

  • 2029 IEEE/MTT-S International Microwave Symposium - MTT 2029

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2021 IEEE/MTT-S International Microwave Symposium - MTT 2021

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.

  • 2019 IEEE/MTT-S International Microwave Symposium - MTT 2019

    Comprehensive symposium on microwave theory and techniques including active and passive circuit components, theory and microwave systems.

  • 2018 IEEE/MTT-S International Microwave Symposium - MTT 2018

    Microwave theory and techniques, RF/microwave/millimeter-wave/terahertz circuit design and fabrication technology, radio/wireless communication.

  • 2016 IEEE/MTT-S International Microwave Symposium - MTT 2016

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2015 IEEE MTT-S International Microwave Symposium (IMS2015)

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter-wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics. The IMS includes technical sessions, both oral and interactive, worksh

  • 2014 IEEE/MTT-S International Microwave Symposium - MTT 2014

    IMS2014 will cover developments in microwave technology from nano devices to system applications. Technical paper sessions, interactive forums, plenary and panel sessions, workshops, short courses, industrial exhibits, and a wide array of other technical activities will be offered.

  • 2013 IEEE/MTT-S International Microwave Symposium - MTT 2013

    The IEEE MTT-S International Microwave Symposium (IMS) is the premier conference covering basic technologies, to passives and actives components to system over a wide range of frequencies including VHF, UHF, RF, microwave, millimeter -wave, terahertz, and optical. The conference will encompass the latest in RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation, wireless systems, RFID and related topics.The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2012 IEEE/MTT-S International Microwave Symposium - MTT 2012

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2011 IEEE/MTT-S International Microwave Symposium - MTT 2011

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010

    Reports of research and development at the state-of-the-art of the theory and techniques related to the technology and applications of devices, components, circuits, modules and systems in the RF, microwave, millimeter-wave, submillimeter-wave and Terahertz ranges of the electromagnetic spectrum.

  • 2009 IEEE/MTT-S International Microwave Symposium - MTT 2009

    The IEEE International Microwave Symposium (IMS) is the world s foremost conference covering the UHF, RF, wireless, microwave, millimeter-wave, terahertz, and optical frequencies; encompassing everything from basic technologies to components to systems including the latest RFIC, MIC, MEMS and filter technologies, advances in CAD, modeling, EM simulation and more. The IMS includes technical and interactive sessions, exhibits, student competitions, panels, workshops, tutorials, and networking events.

  • 2008 IEEE/MTT-S International Microwave Symposium - MTT 2008

  • 2007 IEEE/MTT-S International Microwave Symposium - MTT 2007

  • 2006 IEEE/MTT-S International Microwave Symposium - MTT 2006


ICASSP 2017 - 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

The ICASSP meeting is the world's largest and most comprehensive technical conference focused on signal processing and its applications. The conference will feature world-class speakers, tutorials, exhibits, and over 50 lecture and poster sessions.


2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

The conference program will consist of plenary lectures, symposia, workshops and invited sessions of the latest significant findings and developments in all the major fields of biomedical engineering. Submitted papers will be peer reviewed. Accepted high quality papers will be presented in oral and poster sessions, will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE.

  • 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The conference will cover diverse topics ranging from biomedical engineering to healthcare technologies to medical and clinical applications. The conference program will consist of invited plenary lectures, symposia, workshops, invited sessions and oral and poster sessions of unsolicited contributions. All papers will be peer reviewed and accepted papers of up to 4 pages will appear in the Conference Proceedings and be indexed by IEEE Xplore and Medline/PubMed.

  • 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The conference program will consist of plenary lectures, symposia, workshops and invited sessions of the latest significant findings and developments in all the major fields of biomedical engineering. Submitted papers will be peer reviewed. Accepted high quality papers will be presented in oral and poster sessions, will appear in the Conference Proceedings and will be indexed in PubMed/MEDLINE.

  • 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The Annual International Conference of the IEEE Engineering in Medicine and Biology Society covers a broad spectrum of topics from biomedical engineering and physics to medical and clinical applications. The conference program will consist of invited plenary lectures, symposia, workshops, invited sessions, oral and poster sessions of unsolicited contributions. All papers will be peer reviewed and accepted papers of up to 4 pages will appear in the Conference Proceedings and be indexed by PubMed and EI. Prop

  • 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The annual conference of EMBS averages 2000 attendees from over 50 countries. The scope of the conference is general in nature to focus on the interdisciplinary fields of biomedical engineering. Themes included but not limited to are: Imaging, Biosignals, Biorobotics, Bioinstrumentation, Neural, Rehabilitation, Bioinformatics, Healthcare IT, Medical Devices, etc

  • 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The annual conference of EMBS averages 2000 attendees from over 50 countries. The scope of the conference is general in nature to focus on the interdisciplinary fields of biomedical engineering. Themes included but not limited to are: Imaging, Biosignals, Biorobotics, Bioinstrumentation, Neural, Rehabilitation, Bioinformatics, Healthcare IT, Medical Devices, etc.

  • 2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The annual conference of EMBS averages 2000 attendees from over 50 countries. The scope of the conference is general in nature to focus on the interdisciplinary fields of biomedical engineering. Themes included but not limited to are: Imaging, Biosignals, Biorobotics, Bioinstrumentation, Neural, Rehabilitation, Bioinformatics, Healthcare IT, Medical Devices, etc

  • 2009 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The annual conference of EMBS averages 2000 attendees from over 50 countries. The scope of the conference is general in nature to focus on the interdisciplinary fields of biomedical engineering. Themes included but not limited to are: Imaging, Biosignals, Biorobotics, Bioinstrumentation, Neural, Rehabilitation, Bioinformatics, Healthcare IT, Medical Devices, etc

  • 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    The general theme of EMBC'08 is "Personalized Healthcare through Technology", covering a broad spectrum of topics from biomedical and clinical engineering and physics to medical and clinical applications. Transfer of research results from academia to industry will also be a focus of the conference.

  • 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

  • 2006 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)


2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016)

The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forumfor the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2016 willbe the thirteenth meeting in this series. The previous meetings have played a leading role in facilitatinginteraction between researchers in medical and biological imaging. The 2016 meeting will continue thistradition of fostering crossfertilization among different imaging communities and contributing to an integrativeapproach to biomedical imaging across all scales of observation.

  • 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2015 will be the 12th meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014)

    The IEEE International Symposium on Biomedical Imaging (ISBI) is the premier forum for the presentation of technological advances in theoretical and applied biomedical imaging. ISBI 2014 will be the eleventh meeting in this series. The previous meetings have played a leading role in facilitating interaction between researchers in medical and biological imaging. The 2014 meeting will continue this tradition of fostering crossfertilization among different imaging communities and contributing to an integrative approach to biomedical imaging across all scales of observation.

  • 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013)

    To serve the biological, biomedical, bioengineering, bioimaging and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2011 IEEE 8th International Symposium on Biomedical Imaging (ISBI 2011)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2010 IEEE 7th International Symposium on Biomedical Imaging (ISBI 2010)

    To serve the biological, biomedical, bioengineering, bioimaging, and other technical communities through a quality program of presentations and papers on the foundation, application, development, and use of biomedical imaging.

  • 2009 IEEE 6th International Symposium on Biomedical Imaging (ISBI 2009)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2008 IEEE 5th International Symposium on Biomedical Imaging (ISBI 2008)

    Algorithmic, mathematical and computational aspects of biomedical imaging, from nano- to macroscale. Topics of interest include image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological and statistical modeling. Molecular, cellular, anatomical and functional imaging modalities and applications.

  • 2007 IEEE 4th International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2007)

  • 2006 IEEE 3rd International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2006)


2016 IEEE International Conference on Image Processing (ICIP)

Signal processing, image processing, biomedical imaging, multimedia, video, multidemensional.


More Conferences

Periodicals related to Biomedical imaging

Back to Top

Antennas and Propagation, IEEE Transactions on

Experimental and theoretical advances in antennas including design and development, and in the propagation of electromagnetic waves including scattering, diffraction and interaction with continuous media; and applications pertinent to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques.


Biomedical Engineering, IEEE Reviews in

The IEEE Reviews in Biomedical Engineering will review the state-of-the-art and trends in the emerging field of biomedical engineering. This includes scholarly works, ranging from historic and modern development in biomedical engineering to the life sciences and medicine enabled by technologies covered by the various IEEE societies.


Display Technology, Journal of

This publication covers the theory, design, fabrication, manufacturing and application of information displays and aspects of display technology that emphasize the progress in device engineering, device design, materials, electronics, physics and reliabilityaspects of displays and the application of displays.


Engineering in Medicine and Biology Magazine, IEEE

Both general and technical articles on current technologies and methods used in biomedical and clinical engineering; societal implications of medical technologies; current news items; book reviews; patent descriptions; and correspondence. Special interest departments, students, law, clinical engineering, ethics, new products, society news, historical features and government.


Instrumentation and Measurement, IEEE Transactions on

Measurements and instrumentation utilizing electrical and electronic techniques.


More Periodicals

Most published Xplore authors for Biomedical imaging

Back to Top

Xplore Articles related to Biomedical imaging

Back to Top

Liver Contour Extraction Using Modified Snake with Morphological Multiscale Gradients

Wenfeng Wang; Li Ma; Lin Yang 2008 International Conference on Computer Science and Software Engineering, 2008

Liver segmentation from CT image is a difficult task due to abdomen apparatus complexity. Snakes, or active contours, are extensively used in medical image segmentation. The automatic generation of initial snake curves and improving snake performance in case of blur edges are still open challenges for liver segmentations. In this paper, texture classification and morphology filter are employed to generate ...


Automated ASPECTS scoring system as a clinical support system for acute stroke care

Yao Shieh; Chien Hung Chang Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, 2012

The recombinant tissue plasminogen activator (tPA) has shown effective in improving the outcome of early acute ischemic if less than one third of the territory of the middle cerebral artery (MCA) was involved. The Alberta Stroke Program Early CT Score (ASPECTS) method has been adopted to assess the MCA involvement by many institutions. However, ASPECTS scoring is still a challenge ...


Chapter 5: Smooth Surface Reconstruction Using Doo-Sabin Subdivision Surfaces

Fuhua Cheng; Fengtao Fan; Conglin Huang; Jiaxi Wang; Shuhua Lai; Kenjiro T. Miura 2008 3rd International Conference on Geometric Modeling and Imaging, 2008

A new technique for the reconstruction of a smooth surface from a set of 3D data points is presented. The reconstructed surface is represented by an everywhere C1-continuous subdivision surface which interpolates all the given data points. The new technique consists of two major steps. First, an efficient surface reconstruction method is applied to produce a polyhedral approximation to the ...


Asynchronous examination security system using Ear Visual Biometric for college students

Bernie S. Fabito TENCON 2015 - 2015 IEEE Region 10 Conference, 2015

This study explores the use of an Ear Visual Biometric as a security measure to at least minimize identity theft in asynchronous examination. With the aid of the system, users make use of ear biometrics for user identification and password for user authentication. Users are identified based on the uniqueness of their ear structure thus limiting the chance of identity ...


A novel hybrid technique for visual enhancement of medical ultrasound images

R. Vanithamani; R. Dhivya; S. Sharmili 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 2015

Ultrasound imaging has features like non-invasive nature, real time image formation capacity and relatively low cost, which makes this diagnostic tool attractive and hence has become an important imaging modality in medical diagnoses. However the usefulness of this imaging is degraded by the presence of speckle noise. Hence, speckle suppression in ultrasound images is essential for improving the image quality. ...


More Xplore Articles

Educational Resources on Biomedical imaging

Back to Top

eLearning

Liver Contour Extraction Using Modified Snake with Morphological Multiscale Gradients

Wenfeng Wang; Li Ma; Lin Yang 2008 International Conference on Computer Science and Software Engineering, 2008

Liver segmentation from CT image is a difficult task due to abdomen apparatus complexity. Snakes, or active contours, are extensively used in medical image segmentation. The automatic generation of initial snake curves and improving snake performance in case of blur edges are still open challenges for liver segmentations. In this paper, texture classification and morphology filter are employed to generate ...


Automated ASPECTS scoring system as a clinical support system for acute stroke care

Yao Shieh; Chien Hung Chang Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, 2012

The recombinant tissue plasminogen activator (tPA) has shown effective in improving the outcome of early acute ischemic if less than one third of the territory of the middle cerebral artery (MCA) was involved. The Alberta Stroke Program Early CT Score (ASPECTS) method has been adopted to assess the MCA involvement by many institutions. However, ASPECTS scoring is still a challenge ...


Chapter 5: Smooth Surface Reconstruction Using Doo-Sabin Subdivision Surfaces

Fuhua Cheng; Fengtao Fan; Conglin Huang; Jiaxi Wang; Shuhua Lai; Kenjiro T. Miura 2008 3rd International Conference on Geometric Modeling and Imaging, 2008

A new technique for the reconstruction of a smooth surface from a set of 3D data points is presented. The reconstructed surface is represented by an everywhere C1-continuous subdivision surface which interpolates all the given data points. The new technique consists of two major steps. First, an efficient surface reconstruction method is applied to produce a polyhedral approximation to the ...


Asynchronous examination security system using Ear Visual Biometric for college students

Bernie S. Fabito TENCON 2015 - 2015 IEEE Region 10 Conference, 2015

This study explores the use of an Ear Visual Biometric as a security measure to at least minimize identity theft in asynchronous examination. With the aid of the system, users make use of ear biometrics for user identification and password for user authentication. Users are identified based on the uniqueness of their ear structure thus limiting the chance of identity ...


A novel hybrid technique for visual enhancement of medical ultrasound images

R. Vanithamani; R. Dhivya; S. Sharmili 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 2015

Ultrasound imaging has features like non-invasive nature, real time image formation capacity and relatively low cost, which makes this diagnostic tool attractive and hence has become an important imaging modality in medical diagnoses. However the usefulness of this imaging is degraded by the presence of speckle noise. Hence, speckle suppression in ultrasound images is essential for improving the image quality. ...


More eLearning Resources

IEEE-USA E-Books

  • Appendix B: Glossary

    In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co- authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: Mathematical fundamentals Signal generation and detection principles Signal characteristics Signal localization principles Image reconstruction techniques Image contrast mechanisms Image resolution, noise, and artifacts Fast-scan imaging Constrained reconstruction Complete with a comprehensive set of examples and homework problems, Principles of Magnetic Resonance Imaging is the must-read book to improve your knowledge of this revolutionary technique.

  • Appendix A: The Fourier Transform

    This chapter contains sections titled: Introduction Fourier Transformation of Time-Domain and Spatial Frequency-Domain Signals

  • Appendix C: Abbreviations

    In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co- authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: Mathematical fundamentals Signal generation and detection principles Signal characteristics Signal localization principles Image reconstruction techniques Image contrast mechanisms Image resolution, noise, and artifacts Fast-scan imaging Constrained reconstruction Complete with a comprehensive set of examples and homework problems, Principles of Magnetic Resonance Imaging is the must-read book to improve your knowledge of this revolutionary technique.

  • High-Speed 3D Spectral Imaging with Stimulated Raman Scattering

    Stimulated Raman scattering (SRS) microscopy is a powerful technique for label-free biomedical imaging in real time and in 3D. Indeed, SRS provides chemical contrast of sample molecules reflecting molecular vibrations in a quantitative manner. However, in previous SRS microscopy, it has been difficult to discriminate different molecules with overlapping Raman bands since SRS microscopy visualizes molecular vibrations at a single frequency, which is determined by the optical frequency difference between two-color excitation laser pulses. In order to improve the molecular specificity of SRS microscopy, it will be advantageous to conduct spectral imaging, where SRS images at various Raman shifts are acquired. This chapter reviews the current status of SRS microscopy and discusses how spectral imaging can be accomplished in SRS microscopy. Then the recent development of our high-speed SRS spectral microscopy is introduced. This system enables video-rate SRS imaging while the vibrational frequency is varied in a frame-by-frame manner. Furthermore, in order to discriminate different constituents, spectral images are processed by modified independent component analysis. Spectral imaging of biological tissues in 3D is demonstrated.

  • Appendix B: Backprojection and Filtered Backprojection

    This chapter contains sections titled: Introduction Backprojection Filtered Backprojection

  • About the Authors

    In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co- authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: Mathematical fundamentals Signal generation and detection principles Signal characteristics Signal localization principles Image reconstruction techniques Image contrast mechanisms Image resolution, noise, and artifacts Fast-scan imaging Constrained reconstruction Complete with a comprehensive set of examples and homework problems, Principles of Magnetic Resonance Imaging is the must-read book to improve your knowledge of this revolutionary technique.

  • Appendix D: Mathematical Symbols

    In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co- authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: Mathematical fundamentals Signal generation and detection principles Signal characteristics Signal localization principles Image reconstruction techniques Image contrast mechanisms Image resolution, noise, and artifacts Fast-scan imaging Constrained reconstruction Complete with a comprehensive set of examples and homework problems, Principles of Magnetic Resonance Imaging is the must-read book to improve your knowledge of this revolutionary technique.

  • XRay Imaging and Computed Tomography

    This chapter contains sections titled: General Principles of Imaging with X-Rays X-Ray Production Interactions of X-Rays with Tissue Linear and Mass Attenuation Coefficients of X-Rays in Tissue Instrumentation for Planar X-Ray Imaging X-Ray Image Characteristics X-Ray Contrast Agents X-Ray Imaging Methods Clinical Applications of X-Ray Imaging Computed Tomography Image Processing for Computed Tomography Spiral/Helical Computed Tomography Multislice Spiral Computed Tomography Radiation Dose Clinical Applications of Computed Tomography This chapter contains sections titled: Exercises Further Reading

  • Image Analysis: A Perspective

    This chapter contains sections titled: Main Biomedical Imaging Modalities Biomedical Image Analysis Current Trends in Biomedical Imaging About This Book References

  • Abbreviations

    An integrated, comprehensive survey of biomedical imaging modalities An important component of the recent expansion in bioengineering is the area of biomedical imaging. This book provides in-depth coverage of the field of biomedical imaging, with particular attention to an engineering viewpoint. Suitable as both a professional reference and as a text for a one-semester course for biomedical engineers or medical technology students, Introduction to Biomedical Imaging covers the fundamentals and applications of four primary medical imaging techniques: magnetic resonance imaging, ultrasound, nuclear medicine, and X-ray/computed tomography. Taking an accessible approach that includes any necessary mathematics and transform methods, this book provides rigorous discussions of: The physical principles, instrumental design, data acquisition strategies, image reconstruction techniques, and clinical applications of each modality Recent developments such as multi-slice spiral computed tomography, harmonic and sub-harmonic ultrasonic imaging, multi-slice PET scanning, and functional magnetic resonance imaging General image characteristics such as spatial resolution and signal-to-noise, common to all of the imaging modalities




Jobs related to Biomedical imaging

Back to Top